{composition-setup}{composition-setup} {table:rules=cols|cellpadding=8|cellspacing=0|border=1|frame=void} {tr:valign=top} {td} {excerpt:hidden=true}*[System|system]:* Any number of [rigid bodies|rigid body] or [point particles|point particle] whose angular momentum is constrained to lie along a certain axis. --- *[Interactions|interaction]:* Any that respect the [one-dimensional angular momentum|angular momentum about a single axis].{excerpt} h4. Introduction to the Model h5. Description and Assumptions 1-D Angular Momentum and Torque is a subclass of the general [Angular Momentum and External Torque] model in which a system of rigid bodies is constrained to move only in a plane (usually taken to be the _xy_ plane) with each body's angular momentum therefore directed along an axis perpendicular to the plane (along the z-axis). Under these conditions, the angular momentum is a one-dimensional vector, and the directional subscript (z) is generally omitted. h5. Learning Objectives Students are assumed to understand this model who can: * Describe the conditions that must be satisfied for the valid selection of an [axis of rotation] in a physics problem. * Cacluate the [moment of inertia] of a [system] composed purely of basic objects like rods and spheres. * Calculate the [angular momentum|angular momentum about a single axis] of a [rigid body] rotating about a fixed axle. * Calculate the [angular momentum|angular momentum about a single axis] of a rotating and translating [rigid body] about any [axis|axis of rotation] parallel to the body's [angular velocity] about its [center of mass]. * Determine the net [external|external force] [torque|torque (single-axis)] on a [system]. * Describe the conditions for [angular momentum|angular momentum about a single axis] to be conserved. * Describe how internal changes to the configuration of a [system] will affect its [angular velocity]. * Analyze collisions involving rotational and translational motion of the participants. h5. Relevant Definitions Angular momentum about axis _a_: {latex}\begin{large}\[ L_{a} = I_{cm}\omega + m\vec{r}_{{\rm cm},a}\times \vec{v}_{{\rm cm}} \]\end{large}{latex} h4. S.I.M. Structure of the Model h5. Compatible Systems The [system] can be composed of any number of [rigid bodies|rigid body] and [point particles|point particle]. The system must either be constrained to move in such a way that the [angular momentum|angular momentum about a single axis] will be one-dimensional, or else the symmetries of the situation ([system] plus [interactions|interaction]) must guarantee that the [angular momentum|angular momentum about a single axis] will remain one dimensional. h5. Relevant Interactions External interactions must be explicitly given as torques, or as forces with their point of application or [moment arm] about a chosen [axis of rotation] specified along with their magnitude and direction. (Internal interactions do not change the angular momentum of the system.) h4. Laws of Change h5. Mathematical Representation {section}{column} \\ h5. Differential Form \\ {latex}\begin{large}\[ \sum_{\rm system}\frac{dL_{a}}{dt} = \sum_{\rm external} \tau_{a} \]\end{large}{latex} {column}{column} \\ h5. Integral Form \\ {latex}\begin{large}\[ \sum_{\rm system}L_{a,f} = \sum_{\rm system}L_{a,i} + \int \:\sum_{\rm external} \tau_{a} \:dt \]\end{large}{latex} where the last term is called the "angular impulse" {column}{section} h5. Diagrammatic Representations * [Force diagram|force diagram]. * [Initial-state final-state diagram|initial-state final-state diagram]. h4. Relevant Examples h6. {toggle-cloak:id=cons} Examples Involving Constant Angular Momentum {cloak:id=cons} {contentbylabel:constant_angular_momentum|showSpace=false|showLabels=true|excerpt=true|maxResults=50} \\ {cloak} h6. {toggle-cloak:id=rws} Examples Involving Rolling without Slipping {cloak:id=rws} {contentbylabel:angular_momentum,rolling_without_slipping|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} {contentbylabel:constant_angular_momentum,rolling_without_slipping|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} \\ {cloak} h6. {toggle-cloak:id=par} Examples Involving the Parallel Axis Theorem {cloak:id=par} {contentbylabel:angular_momentum,parallel_axis|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} {contentbylabel:constant_angular_momentum,parallel_axis|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} \\ {cloak} h6. {toggle-cloak:id=all} All Examples Using this Model {cloak:id=all} {contentbylabel:angular_momentum,constant_angular_momentum|showSpace=false|showLabels=true|excerpt=true|operator=OR|maxResults=50} {cloak} \\ \\ {search-box} \\ \\ {td} {td:width=235} [!skater.jpg|alt="How can a skater change their rate of rotation in mid-spin? Click the image to investigate"!|Twirling Skater] \\ \\ [!well.jpg|alt="How fast does a bucket fall down a well? Click the image to investigate."!|Down the Well] \\ \\ Pictures courtesy of: [Wikimedia Commons|http://commons.wikimedia.org] user [Dobromila|http://commons.wikimedia.org/wiki/User:Dobromila] \\ [Wikimedia Commons|http://commons.wikimedia.org] user [Vmenkov|http://commons.wikimedia.org/wiki/User:Vmenkov] {td} {tr} {table} {html} <script type="text/javascript"> var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> try { var pageTracker = _gat._getTracker("UA-11762009-2"); pageTracker._trackPageview(); } catch(err) {}</script> {html} |