{composition-setup}{composition-setup} {table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols} {tr:valign=top} {td} {excerpt:hidden=true}*System:* One [rigid body] in [pure rotation] or one [point particle] constrained to move in a circle. --- *Interactions:* Any [angular acceleration]. --- *Warning:* The constraint of rotational motion implies [centripetal acceleration] may have to be considered.{excerpt} h4. Introduction to the Model h5. Description and Assumptions This model applies to a [rigid body] which is executing [pure rotation] confined to the _xy_ plane about the origin. h5. Learning Objectives Students will be assumed to understand this model who can: * Describe what it means for a system to execute pure rotation. * Convert from tangential (linear) quantities to the corresponding angular quantities using the radius of the motion. * Explain the dependence of angular quantities and of tangential quantities describing the motion of a point on the radius of the point from the [axis of rotation]. * Define tangential and centripetal acceleration for an object in rotational motion. * Relate centripetal acceleration to angular velocity. * Give an expression for the total [acceleration] of any point in a [rigid body] executing rotational motion in terms of the [angular acceleration] of the body, the [angular velocity] of the body and the radius of the point from the [axis of rotation]. * Summarize the analogies between angular motion with constant angular acceleration and linear motion with constant (linear) acceleration. h5. Relevant Definitions {section}{column} {panel:title=Relationship between Angular and Tangential Quantities|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ \vec{v}_{\rm tan} = \vec{\omega} \times \vec{r} = \omega r \;\hat{\theta}\] \[ \vec{a}_{\rm tan} = \vec{\alpha}\times \vec{r} = \alpha r \;\hat{\theta}\]\end{large}{latex}{center}{panel} {column}{column} {panel:title=Centripetal Acceleration|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ \vec{a}_{c} = -\frac{v_{\rm tan}^{2}}{r}\hat{r} = -\omega^{2}r\;\hat{r}\]\end{large}{latex}{center}{panel} {column}{column} {panel:title=Magnitude of Total Acceleration|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ a = \sqrt{a_{tan}^{2}+a_{c}^{2}} = r\sqrt{\alpha^{2}+\omega^{4}} \]\end{large}{latex}{center} {panel} {column}{section} {note}By definition, _every point_ in an object undergoing [pure rotation] will have the same value for all _angular_ quantities (θ, ω, α). The linear quantities (_r_, _v_, _a_), however, will vary with position in the object.{note} h4. S.I.M. Structure of the Model h5. Compatible Systems This model applied to a single [rigid body] or to a single [point particle] constrained to move in a circular path. h5. Relevant Interactions The system will be subject to a position-dependent [centripetal acceleration], and may also be subject to an angular (or equivalently, [tangential|tangential acceleration]) acceleration. h4. Laws of Change h5. Mathematical Representation {section}{column} {panel:title=Differential Form|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ \frac{d\omega}{dt} = \alpha \] \[\frac{d\theta}{dt} = \omega\] \end{large}{latex}{center} {panel} {column}{column} {panel:title=Integral Form|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ \omega_{f} = \omega_{i} +\int_{t_{i}}^{t_{f}} \alpha \;dt\] \[ \theta_{f} = \theta_{i} +\int_{t_{i}}^{t_{f}} \omega\;dt\]\end{large}{latex}{center} {panel} {column}{section} {note}Note the analogy between these Laws of Change and those of the [One-Dimensional Motion (General)] model. Thus, for the case of *constant angular acceleration*, the integral form of these Laws are equivalent to: \\ {center}{latex}\begin{large}\[ \omega_{f} = \omega_{i} + \alpha(t_{f}-t_{i})\] \[ \theta_{f} = \theta_{i} + \frac{1}{2}(\omega_{i}+\omega_{f})(t_{f}-t_{i})\] \[ \theta_{f} = \theta_{i} + \omega_{i}(t_{f}-t_{i}) +\frac{1}{2}\alpha(t_{f}-t_{i})^{2}\] \[ \omega_{f}^{2} =\omega_{i}^{2} + 2\alpha(\theta_{f}-\theta_{i})\]\end{large}{latex}{center} {note} h5. Diagrammatic Representations * Angular position versus time graph. * Angular velocity versus time graph. h4. Relevant Examples h6. {toggle-cloak:id=all} All Examples Using the Model {cloak:id=all} {contentbylabel:constant_angular_acceleration|maxResults=50|showSpace=false|excerpt=true} {cloak} \\ \\ {search-box} \\ \\ {td} {tr} {table} |