Here is a list of our publications.
2016
Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding
- William Cody Burton, Colin J Kennedy, Woo Chang Chung, Samarth Vadia, Wenlan Chen, Wolfgang Ketterle, Phys. Rev. Lett. 117, 275301 (2016).
arxiv:1610.08418 [cond-mat.quant-gas]
- APS Physics synopsis article about our paper:
Synopsis: Superfluid Shielding, Ana Lopes, Physics
- MIT news article:
Hyperprecise Measurement with Bose-Einstein Condensates, Larry Hardesty, MIT News
2015
Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field
- Colin J Kennedy, William Cody Burton, Woo Chang Chung, Wolfgang Ketterle, Nat. Phys. 11, 859–864 (2015).
arXiv:1503.08243 [cond-mat.quant-gas]
- Nature News and Views article on our results:
Ultracold Atoms: Feel the Gauge, Tomoki Ozawa, Nat. Phys. 11, 801–802 (2015).
- MIT News article on the results:
A New Look at Superfluidity, Jennifer Chu, MIT News .
Adiabatic Cooling of Bosons in Lattices to Magnetic Ordering
- Johannes Schachenmayer, David M. Weld, Hirokazu Miyake, Georgios A. Siviloglou, Andrew J. Daley, Wolfgang Ketterle, Phys. Rev. A 92, 041602 (2015).
arXiv:1503.07466 [cond-mat.quant-gas]
2014
Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space
- Tena Dubček, Colin J Kennedy, Ling Lu, Wolfgang Ketterle, Marin Soljačić, Hrvoje Buljan, Phys. Rev. Lett. 114, 225301 (2015)
arXiv:1412.7615 [cond-mat.quant-gas]
Scheme for generalized maximally localized Wannier functions in one dimension
- Yuri Lensky, Colin J. Kennedy, arXiv:1412.3734 [cond-mat.str-el]
2013
Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin-Flips
- Colin J. Kennedy, Hirokazu Miyake, Georgios A. Siviloglou, William Cody Burton, Wolfgang Ketterle, Phys. Rev. Lett. 111, 225301 (2013)
arXiv:1308.6349 [cond-mat.quant-gas]
Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices
- Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody Burton, Wolfgang Ketterle, Phys. Rev. Lett. 111, 185302 (2013)
arXiv:1308.1431 [cond-mat.quant-gas]
- Physics Viewpoint article on our Harper Hamiltonian work:
Looking for Hofstadter's Butterfly in Cold Atoms, Cheng Chin and Erich Mueller, Physics 6, 118 (2013)
- Nature news including other efforts on Hofstadter's Butterfly:
Physicists Net Fractal Butterfly, Devin Powell, Nature 501, 144–145 (12 September 2013)
2011
Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions
- Hirokazu Miyake, Georgios A. Siviloglou, Graciana Puentes, David E. Pritchard, Wolfgang Ketterle, and David M. Weld, Phys. Rev. Lett. 107, 175302 (2011)
arXiv:1108.5408v2 [cond-mat.quant-gas]
Spin Gradient Demagnetization Cooling of Ultracold Atoms
- Patrick Medley, David M. Weld, Hirokazu Miyake, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 106, 195301 (2011)
2010
Thermometry and refrigeration in a two-component Mott insulator of ultracold atoms
- David M. Weld, Hirokazu Miyake, Patrick Medley, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. A 82, 051603 (2010)
2009
Spin Gradient Thermometry of Ultracold Atoms in Optical Lattices
- David M. Weld, Patrick Medley, Hirokazu Miyake, David Hucul, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 103, 245301 (2009)
- Physics Viewpoint article on our spin gradient thermometry paper
The super cool atom thermometer, A. M. Rey, Physics 2, 103 (2009)
2007
Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice
- Jongchul Mun, Patrick Medley, Gretchen K. Campbell, Luis G. Marcassa, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 99, 150604 (2007)
Atom trapping with a thin magnetic film
- Micah Boyd, Erik W. Streed, Patrick Medley, Gretchen K. Campbell, Jongchul Mun, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. A 76, 043624 (2007)
2006
Imaging the Mott Insulator Shells By Using Atomic Clock Shifts
- Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Patrick Medley, Aaron E. Leanhardt, Luis G. Marcassa, David E. Pritchard, and Wolfgang Ketterle, Science 313, 649 (2006)
Continuous and Pulsed Quantum Zeno Effect
- Erik W. Streed, Jongchul Mun, Micah Boyd, Gretchen K. Campbell, Patrick Medley, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006)
Parametric Amplification of Scattered Atom Pairs
- Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 96, 020406 (2006)
Large atom number Bose-Einstein Condensate machines
- Erik W. Streed, Ananth P. Chikkatur, Todd L. Gustavson, Micah Boyd, Yoshio Torii, Dominik Schneble, Gretchen K. Campbell, David E. Pritchard, and Wolfgang Ketterle, Rev. Sci. Instrum. 77, 023106 (2006)
2005
Photon Recoil Momentum in Dispersive Media
- Gretchen K. Campbell, Aaron E. Leanhardt, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 94, 170403 (2005)
2004
Raman amplification of matter waves
- Dominik Schneble, Gretchen K. Campbell, Erik W. Streed, Micah Boyd, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. A 69, 041601 (2004)
2003
The Onset of Matter-Wave Amplification in a Superradiant Bose-Einstein Condensate
- Dominik Schneble, Yoshio Torii, Micah Boyd, Erik W. Streed, David E. Pritchard, and Wolfgang Ketterle, Science 300, 475 (2003)
Theses
William Cody Burton, Ultracold Bosons in Optical Lattices for Quantum Measurement and Simulation 3 MB (2018)
Colin Kennedy, Creating Novel Quantum States of Ultracold Bosons in Optical Lattices 32MB (2017)
Hirokazu Miyake, Probing and Preparing Novel State of Quantum Degenerate Rubidium Atoms in Optical Lattices 3MB (2013)
Patrick Medley, Thermometry and Cooling of Ultracold Atoms in an Optical Lattice 2MB (2010)
David Hucul, Magnetic Super-Exchange with Ultra Cold Atoms in Spin Dependent Optical Lattices 4MB (2009)
Jongchul Mun, Bose-Einstein Condensates in Optical Lattices: The Superfluid to Mott Insulator Phase Transition 7MB (2008)
Micah Boyd, Novel Trapping Techniques for Shaping Bose-Einstein Condensates 4MB (2006)
Gretchen Campbell, 87Rubidium Bose-Einstein Condensates in Optical Lattices 3MB (2006)
Erik Streed, 87Rubidium Bose-Einstein Condensates: Machine Construction and Quantum Zeno Experiments 4MB (2006)
Comparison of a Bose-Einstein Condensate (BEC) of ultracold Rubidium atoms in an optical lattice (left) with a BEC of atoms in an optical lattice with very strong synthetic magnetic fields (right). The synthetic field created in the lab corresponds to a real magnetic field in a typical material (with 1 Angstrom lattice spacing) that is over 100 times higher than the most powerful magnets in the world are capable of producing. The images show the superfluid diffraction pattern from the lattice and reveal the degeneracy of states in Hofstadter’s butterfly, which is closely related to the large degeneracy of Landau levels. The ability to add interactions to the system is an important starting point for addressing open questions about topological phases of matter with strong interactions using ultracold atoms in optical lattices.
Superfluid shielding of atom number fluctuations in an accelerated BEC. (a) Before applying a tilt, the atoms are in a superfluid, which is approximately described by a coherent state on each site. The chemical potential is constant across the cloud. (b) In the limit of a strong tilt (∆ ≫ J), the wavefunction at each lattice site is projected onto the number basis, leading to fluctuations in the number of atoms and chemical potential from site to site. (c) If the gas has two components, one which is localized by the tilt, and one which remains superfluid, the itinerant component can compensate for fluctuations in the localized component. (d-f) Momentum distribution over the course of a single Bloch oscillation after ten cycles. (d) Without superfluid shielding, the diffuse cloud indicates decoherence of the condensate. (e) The itinerant component feels no force and does not Bloch oscillate. (f) For the shielded component, the Bloch oscillation contrast is high. (g) Exponential decay of the Bloch oscillation contrast for a one-component (blue dots) and two component (red squares) gas, for a transverse lattice depth of 11 Er and ∼8 × 103 atoms.
Entropy distribution during spin gradient demagnetization cooling as in Phys. Rev. Lett. 106, 195301 (2011). Final temperatures are (a) T = 3.0 nK, (b) T = 1.5 nK, and (c) T = 0.5 nK. The technique pioneered in our lab was able to cool the atoms in our lattice to an astonishing 350 +/- 50 picokelvin!
Navigate space