Question 1

I have a machine stirring in a bucket with liquid. The bucket is under constant pressure and is insulated from the environment (an adiabatic bucket).

<p>
</p>

a) Which of the following statements regarding the enthalpy of the bucket during this process is correct? The bucket is defined as the physical bucket + the liquid in it.

<center>

<br>

<math>\Delta H_

Unknown macro: {bucket}

> 0</math> _____ <math>\Delta H

< 0</math> _____ <math>\Delta H

Unknown macro: {bucket}

= 0</math> ______

<br>

</center>

In general it is easy to derive that <math>(dH)_P = (\partial Q)_P + (\partial W')_P</math> where <math>\partial W'</math> are all that work terms that are not <math>-pdV</math>. Stirring is such a work term (a form of mechanical work). Hence since work is performed on the bucket <math>W' > 0</math>, hence <math>dH > 0</math>.

<p>
</p>

b) Which of the following statements regarding the entropy of the bucket during this process is correct ? The bucket is defined as the physical bucket + the liquid in it.

<center>

<br>

<math>\Delta S_

> 0</math> _____ <math>\Delta S

Unknown macro: {bucket}

< 0</math> _____ <math>\Delta S

= 0</math> ______

<br>

</center>

The stirring is irreversible and the stirring work will be dissipated as heat. Hence the entropy increases.

<p>
</p>

c) Which of the following statements regarding the enthalpy of the surroundings is correct ?

<center>

<br>

<math>\Delta H_

Unknown macro: {surr}

> 0</math> _____ <math>\Delta H

< 0</math> _____ <math>\Delta H

Unknown macro: {surr}

= 0</math> ______

<br>

</center>

Same analysis as in part b, but now for the surroundings. It has to perform work, hence the enthalpy of the surroundings decreases.

<p>
</p>

d) What is the minimal entropy change that needs to place in the surroundings. ?

<center>

<br>

<math>\Delta S_

> 0</math> _____ <math>\Delta S

Unknown macro: {surr}

< 0</math> _____ <math>\Delta S

= 0</math> ______

<br>

</center>

The minimal entropy change in the surroundings will take place when the work needed for the stirring is produced reversibly.

[Category:Entropy Change]

Question 2

A super-elastic single crystal can transform between two phases (�� and ��) which have different unit cells, and hence different shape. At room temperature (298K) a superelastic strain of 7% can be achieved at a uniaxial stress of 30MPa.

<p>
</p>

a) Define the relevant thermodynamic potential which is minimal under conditions of constant applied force and constant temperature. Write the differential of this potential. You can neglect the work performed by/on the atmospheric pressure.

Define the free energy, G

<center>

<br>

<math>G = U - TS - Fl</math>

<br>

<math>dU = TdS + Fdl</math>

<br>

<math>dG = -SdT - ldF</math>

<br>

</center>

There is now a potential <math>G(T, F)</math>

<p>
</p>

b) For its application, the stress needed to achieve the super-elastic strain can not exceed 100MPa or be below 10MPa. Calculate the temperature range in which the material can operate. Clearly state the assumptions made as you derive your result !

<p>
</p>

Write the Clapeyron type equation

<center>

<br>

<math>\frac

Unknown macro: {dF}
Unknown macro: {dT}

= \frac{-\Delta S}

Unknown macro: {Delta l}

</math>

<br>

<math>\frac

Unknown macro: {d sigma}

= \frac{-\Delta H}

Unknown macro: {T Delta epsilon underline V}

</math>

<br>

</center>

Integrate to derive the following result.

<center>

<br>

<math>\Delta \sigma = - \frac

Unknown macro: { Delta H }
Unknown macro: { Delta epsilon underline V }

\ln \left ( \frac

Unknown macro: {T_2}
Unknown macro: {T_1}

\right )</math>

<br>

</center>

Use data from the problem.

<center>

<br>

<math>\frac

Unknown macro: {Delta H}
Unknown macro: {Delta epsilon underline V }

= \frac

Unknown macro: {300 J/mole}

{-0.07 \cdot 8 \cdot 10^-6 \frac

Unknown macro: {m^3}
Unknown macro: {mole}

}</math>

<br>

<math>\frac

Unknown macro: {Delta epsilon underline V }

= 530 M Pa</math>

<br>

</center>

After having evaluated a constant term, find the upper and lower limits.

  • Upper limit:

<center>

<br>

<math>70 MPa = 530 MPa \cdot \ln \left ( \frac{T_{upper}}

Unknown macro: {298 K}

\right )</math>

<br>

<math>T_

Unknown macro: {upper}

= 340 K</math>

<br>

</center>

  • Lower limit:

<center>

<br>

<math>-20 MPa = 530 MPa \cdot \ln \left ( \frac{T_

Unknown macro: {lower}

}

\right )</math>

<br>

<math>T_

Unknown macro: {upper}

= 287 K</math>

<br>

</center>

Question 3

Two system, each containing chemical species A, B and C in different concentrations, are in contact through a semi-permeable wall. The semi-permeable wall does not allow for transport of A, B or C individually, but only allows a pair of molecules A-B to pass through together. The systems can be considered to be at constant temperature and pressure.

<p>
</p>

Derive the equilibrium conditions imposed on the chemical potentials for this system.

<p>
</p>

First find the potential that would be minimal under the conditions described above. There is flowing matter and constant temperature and pressure.

<center>

<br>

<math>dG = -SdT + VdP + \sum \mu_i dn_i</math>

<br>

</center>

Temperature and pressure is constant, so related terms are equal to zero. Expand <math>dG</math>

<center>

<br>

<math>dG^

Unknown macro: {alpha}

= dG^

Unknown macro: {beta}

</math>

<br>

<math>dG = \mu_A^

dn_A^

Unknown macro: {alpha}

+ \mu_B^

dn_B^

Unknown macro: {alpha}

+ \mu_A^

Unknown macro: {beta}

dn_A^

+ \mu_B^

Unknown macro: {beta}

dn_B^

</math>

<br>

</center>

Remember that component C does not enter into the equilibrium because it cannot be moved. Use information in the problem to write down everything in terms of <math>dn_A^

</math>.

<center>

<br>

<math>dn_A^

Unknown macro: {alpha}

= -dn_A^

Unknown macro: {beta}

</math>

<br>

<math>dn_A^

= -dn_B^

Unknown macro: {beta}

</math>

<br>

<math>dn_A^

Unknown macro: {alpha}

= dn_B^

</math>

<br>

<math>dG = \mu_A^

Unknown macro: {alpha}

dn_A^

+ \mu_B^

Unknown macro: {alpha}

dn_A^

- \mu_A^

dn_A^

Unknown macro: {alpha}
  • \mu_B^
    Unknown macro: {beta}
    dn_A^

</math>

<br>

<math>dG = \left [\mu_A^

Unknown macro: {alpha}

+ \mu_B^

- \left ( \mu_A^

Unknown macro: {beta}

+ \mu_B^

\right ) \right]</math>

<br>

<math> \mu_A^

Unknown macro: {alpha}

+ \mu_B^

- \left ( \mu_A^

Unknown macro: {beta}

+ \mu_B^

\right ) = 0</math>

<br>

<math>\mu_A^

Unknown macro: {alpha}

+ \mu_B^

= \mu_A^

Unknown macro: {beta}

+ \mu_B^

</math>

<br>

</center>

Question 4

In class we derived an expression for dS in terms of dP and dT. Derive two other expressions for dS: one in terms of dT, dV, another in terms of dV, dP. Write the expressions in terms of heat capacities, compressibilities and coefficients of thermal expansion. Use the symbol �� for thermal expansion, �� for compressibility, and C for heat capacity. If further specification of the property is necessary, please use indices (e.g Cp is constant pressure heat capacity etc.).

<p>
</p>

For <math>S(T, V)</math> start with the differential for <math>S</math> as a function of <math>T</math> and <math>V</math>

<center>

<br>

<math>dS = \left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial V}

\right )_T dV + \left ( \frac

Unknown macro: {partial T}

\right )_V dT</math>

<br>

</center>

Manipulate the two partial derivatives to express them in terms of known quantities.

<center>

<br>

<math>dS = \left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial V}

\right )_T = \left ( \frac

Unknown macro: {partial p}

\right )_V</math>

<br>

<math>\left ( \frac

Unknown macro: { partial p }
Unknown macro: { partial T }

\right )_V = \frac

Unknown macro: { -1 }

{ \left ( \frac

Unknown macro: { partial V }

\right )_p \left ( \frac

\right )_T</math>

<br>

<math>\left ( \frac

Unknown macro: { partial p }
Unknown macro: { partial T }

\right )_V = - \frac{ \left ( \frac

Unknown macro: { partial V }

\right )_p }{ \left ( \frac

Unknown macro: { partial V }

\right )_T</math>

<br>

<math> \left ( \frac

Unknown macro: { partial p }
Unknown macro: { partial T }

\right )_V = - \frac

Unknown macro: { -V alpha_v }
Unknown macro: { -V beta_T }

</math>

<br>

<math> \left ( \frac

Unknown macro: { partial T }

\right )_V = - \frac

Unknown macro: { alpha_v }
Unknown macro: { beta_T }

</math>

<br>

</center>

and

<center>

<br>

<math>\left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial T}

\right )_V = \frac

Unknown macro: {c_v}
Unknown macro: {T}

</math>

<br>

</center>

Combining expression results in the equation below.

<center>

<br>

<math>dS = \left ( \frac

Unknown macro: { beta_T }

\right ) dV + \left ( \frac

Unknown macro: { c_v }
Unknown macro: { T }

\right ) dT</math>

<br>

</center>

Approach S(V, p) in a similar manner

<center>

<br>

<math>dS = \left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial V}

\right )_p dV + \left ( \frac

Unknown macro: {partial p}

\right )_V dp</math>

<br>

<math>\left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial V}

\right )_p = \left ( \frac

Unknown macro: {partial T}

\right )_p \left ( \frac

Unknown macro: {partial V}

\right )_p</math>

<br>

<math>\left ( \frac

Unknown macro: {partial S}

\right )_p = \frac

Unknown macro: {c_p}
Unknown macro: {T}

\cdot \frac

Unknown macro: {1}

{V \alpha_v</math>

<br>

<math>\left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial V}

\right )_p = \frac

Unknown macro: {T V alpha_v}

</math>

<br>

</center>

and

<center>

<br>

<math>\left ( \frac

Unknown macro: {partial S}

\right )_V = \left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial T}

\right )_V \left ( \frac

Unknown macro: {partial p}

\right )_V</math>

<br>

<math>\left ( \frac

Unknown macro: {partial p}

\right )_V = \frac

Unknown macro: {c_v}
Unknown macro: {T}

\cdot \frac

Unknown macro: {beta_T}
Unknown macro: {alpha_v}

</math>

<br>

</center>

Combine expressions to derive the equation below.

<center>

<br>

<math>dS = \left ( \frac

Unknown macro: { c_p }
Unknown macro: { T V alpha_v }

\right ) dV + \left ( \frac

Unknown macro: { c_v beta_T}
Unknown macro: { T alpha_v }

\right ) dp</math>

<br>

</center>

Question 5

A system has the equation of state H = A T, where A = 100J/K. Assume this equation of state is valid in the temperature range from 1K to 500K. The system is cooled from 298K to 1K by operating a refrigerator with the high temperature heat release at 298K. The low temperature heat absorption cools the system. What is the minimum work required to cool this system from 298 K to 1K ?

Use an ideal refrigerator. Start with the first law and the second law.

<center>

<br>

<math>\delta Q_L + \delta Q_H + \delta W = 0</math>

<br>

<math>\frac

Unknown macro: {delta Q_H}
Unknown macro: {T_H}

+ \frac

Unknown macro: {delta Q_L}
Unknown macro: {T_L}

= 0</math>

<br>

<math>\delta Q_H = - \frac

Unknown macro: {T_L}

\delta Q_L</math>

<br>

</center>

Combine expression derived from the first and second law.

<center>

<br>

<math>\delta Q_L \left (1 - \frac

Unknown macro: {T_H}

\right ) + \delta W = 0</math>

<br>

<math>\delta W = \left ( \frac

Unknown macro: {T_H}
Unknown macro: {T_L}

- 1 \right ) \delta Q_L</math>

<br>

</center>

Write <math>\delta Q_L</math> in terms of enthalpy.

<center>

<br>

<math>\delta Q_L = dH</math>

<br>

<math>dH = -AdT</math>

<br>

</center>

The term on the right is negative because heat is given off to the heat reservoir at <math>T_L</math>, and <math>dT</math> is negative.

<center>

<br>

<math>\delta W = - A \left ( \frac

Unknown macro: {T_L}
  • 1 \right ) dT</math>

<br>

<math>W = \int_1^

Unknown macro: {298}

- A \left ( \frac

Unknown macro: {T_H}

- 1 \right ) dT</math>

<br>

<math>W = [AT_H \ln T]_1^

Unknown macro: {298}
  • [AT]_1^

</math>

<br>

<math>W = AT_H \ln 298 - A(297)</math>

<br>

<math>W=140 kJ</math>

  • No labels