How do we count the number of allowed eigenstates using the k-space graphic description?

What assumptions are used in the free electron model?

What is the physical significance of the Fermi energy and Fermi k vector?

Why is the Fermi temperature so high?

How do we find the density of electrons in the conduction band?

The density of electrons <math>n_c</math> in the conduction band is given by

<math>n_c=\int_

Unknown macro: {epsilon_c}

^

Unknown macro: {infty}

g_c (\epsilon) \cdot f(\epsilon)d\epsilon</math>

where <math>g_c (\epsilon) = \sqrt

Unknown macro: {2(epsilon - epsilon_c)}

\frac{m_c^{*

Unknown macro: {3/2}

}}

Unknown macro: {pi^2 hbar^3}

\propto \sqrt

Unknown macro: {epsilon}

</math> is the density of states function, and <math>f(\epsilon) = \frac

Unknown macro: {1}

{e^{\frac

Unknown macro: {epsilon - mu}

{k_B T}}+1}</math> is the probability of having an electron with a certain energy.

<math>\mu</math> is the chemical potential.

How do we find the carrier density for an intrinsic material?

<math>if \begin

Unknown macro: {cases}

\epsilon_c - \mu >> k_B T
\mu - \epsilon_v >> k_B T \end

</math>

then <math>f(\epsilon) = \frac

{e^{\frac

Unknown macro: {epsilon - mu}

{k_B T}}+1}</math> can be simplified.

<math>n_c \simeq \int_

^

Unknown macro: {infty}

d \epsilon \cdot g_c(\epsilon) \cdot e^{\frac{-(\epsilon - \mu)}{k_B T}}
= \int_

Unknown macro: {epsilon_c}

^

d \epsilon \cdot g_c(\epsilon) \cdot e^{\frac{(\epsilon - \epsilon_c)}{k_B T}} \cdot e^{\frac{(\epsilon_c - \mu)}{k_B T}}
= N_c (T) \cdot e^{\frac{-(\epsilon_c - \mu)}

Unknown macro: {k_B T}

</math>

<math>N_c (T) = \frac

Unknown macro: {1}
Unknown macro: {4}

\left ( \frac

Unknown macro: { 2 m_c^* k_B T }
Unknown macro: { pi hbar^2 }

\right)^{\frac

Unknown macro: {3}

{2}}</math> from the integral

We can do a similar derivation with the valence band:

<math>p_v (T) \simeq P_v (T) \cdot e^{\frac{-(\mu - \epsilon_v)}

</math>

<math>P_v (T) = \frac

Unknown macro: {1}
Unknown macro: {4}

\left ( \frac

Unknown macro: { 2 m_h^* k_B T }
Unknown macro: { pi hbar^2 }

\right)^{\frac

Unknown macro: {3}

{2}}</math>

Law of Mass Action

<math>n_c \cdot p_v = N_c \cdot P_v \cdot e^{\frac

Unknown macro: {epsilon_v - epsilon_c}

{k_B T}} = N_c \cdot P_v \cdot e^{\frac{-E_g}

Unknown macro: {k_B T}

</math>

Note: Dependent only on temperature and bandgap

For an Intrinsic (undoped) Semiconductor

<math>n_c = p_v = n_i
</math>

<math>n_i^2 = N_c \cdot P_v \cdot e^{\frac{-E_g}

</math>

<math>n_i = \sqrt

Unknown macro: {N_c cdot P_v}

e^{\frac{-E_g}

Unknown macro: {2 k_B T}

</math>

<math>N_c (T) \cdot e^{\frac{-(\epsilon_c - \mu)}

Unknown macro: {k_B T}

}= \sqrt

e^{\frac{-E_g}

Unknown macro: {2 k_B T}

</math>

<math>n_i</math> for silicon is 1.12 eV (know this number)

What are the basic steps used to derive the Fermi-Dirac distribution and where di the fermionic properties of the electrons enter in the derivation?

What electrons participate in determining the thermodynamic and transport properties of metals?

  • No labels