...
LaTeX Math Block |
---|
anchor | Shear Pin Calcs |
---|
alignment | left |
---|
|
\begin{equation*}
F_{net}=M_{1}g+M_{2}g+D_{1}+D_{2}=(M_{1}+M_{2})a_{net}\\
a_{net}=\frac{D_{1}+D_{2}}{M_{1}+M_{2}}+g
|
Here, N is the interaction between the two sections. If N is negative, there will be drag separation (nothing will be holding the sections together).
System 1:
LaTeX Math Block |
---|
anchor | System1 |
---|
alignment | left |
---|
|
M_{1}a_{net}=N+D_{1}+M_{1}g
N=M_{1}(\frac{D_{1}+D_{2}}{M_{1}+M{2}}+g)-D_{1}-M_{1}g
N=\frac{M_{1}D_{2}-M_{2}D_{1}}{M_{1}+M_{2}} |
System 2:
LaTeX Math Block |
---|
anchor | System2 |
---|
alignment | left |
---|
|
M_{2}a_{net}=D_{2}+M_{2}g-N
\end{equation*}N=D_{2}+M_{2}g-M_{2}a_{net}
N=\frac{M_{1}D_{2}-M_{2}D_{1}}{M_{1}+M_{2}} |
These results tell us that drag separation will occur (N<0) if M2 is sufficiently large and/or D1 is sufficiently large.