Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Created design of mold in Solidworks (using "Solidworks mold tools" --> helpful tutorial: https://youtu.be/yqROZFStz6c) and save as an .STL file.
  2. Calculated how much MDF needs to be used (based on thickness, dimensions of nose cone). Make sure to account for extra area for pry slits and alignment pins.
  3. Cut the MDF using a bandsaw and glued together (using what epoxy?). The piece of MDF we used was 25" x 97" so it required two people to cut it on the bandsaw because it was so large. It would be better to use a table saw to get the sides more even so that aligning the mold on the router will be easier.
    Image Added
  4. Mark where pry slits and alignment pins go. 
  5. Verified that the tool head would not run into the wall of the nose cone while routing (this can happen if you're cutting too steep of an angle: see image below)
    Image AddedImage Added
  6. Find some way to clamp the mold to the router table (if it moves around while routing, the mold will be ruined). Since we already glued the pieces of MDF together we decided to attach L-brackets to the side of the mold so that it can be bolted to the router table. We forgot to plan for this ahead of time so it was annoying and we had to increase the size of the holes in the L-brackets to fit the screws that attach to the table. An alternative would be to cut slots in the MDF before you glue the layers together so that it can be clamped down.
    Image AddedImage Added
  7. When routing:
    1. Make sure the router is routing the correct shape- pause if necessary (instead of stopping the router altogether, set the speed to 1% so you don't have to re-zero everything after. It won't technically be "stopped" but it will be moving very slowly so you're effectively pausing it)
    2. Lots of sawdust will be generated, so follow the router tip with a vacuum to get most of it.

...