{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=40%}
{tr}
{td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]*
{td}
{tr}
{tr}
{td}
{pagetree:root=Model Hierarchy|reverse=true}
{search-box}
{td}
{tr}
{table}
h2. Description and Assumptions
{excerpt:hidden=true}*System:* One [point particle] constrained to move in one dimension. --- Interactions: The acceleration must be a [sinusoidal function] of time.{excerpt}
This model applies to a single [point particle] constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM.{excerpt}
h2. Problem Cues
Any object that experiences a _linear_ restoring force or torque so that the equation of motion takes the form
{latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega^{2}x \]\end{large}{latex}
or
{latex}\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega^{2}\theta\] \end{large}{latex}
will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass _m_ attached to a spring with force constant _k_, in which case, by [Hooke's Law]:
{latex}\begin{large}\[ a = -\frac{kx}{m} \]\end{large}{latex}
giving simple harmonic motion with angular frequency {latex}$\sqrt{\dfrac{k}{m}}${latex}.
----
|| Page Contents ||
| {toc:style=none|indent=10px} |
----
h2. Prerequisite Knowledge
h4. Prior Models
* [1-D Motion (Constant Velocity)]
* [1-D Motion (Constant Acceleration)]
h4. Vocabulary and Procedures
* [restoring force]
* [periodic motion]
* [angular frequency]
* [phase]
----
h2. System
h4. Constituents
A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]).
h4. State Variables
Time (_t_), position (_x_) , velocity (_v_) and acceleration (_a_) or their angular equivalents.
----
h2. Interactions
h4. Relevant Types
The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.
h4. Interaction Variables
Force (_F_) or the angular equivalent.
----
h2. Model
h4. Relevant Definitions
h5. Initial Conditions
\\
{latex}\begin{large}\[ x_{0} = x(t=0) = -\frac{a(t=0)}{\omega^{2}}\]
\[ v_{0} = v(t=0)\]\end{large}{latex}
h5. Amplitude of motion:
\\
{latex}\begin{large}\[ A = \sqrt{x_{0}^{2} + \left(\frac{v_{0}}{\omega}\right)^{2}}\]\end{large}{latex}
h5. Phase:
\\
{latex}\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{0}}{A}\right) = \sin^{-1}\left(\frac{v_{0}}{\omega A}\right)\]\end{large}{latex}
h4. Laws of Change
\\
h5. Position:
\\
{latex}\begin{large}\[ x(t) = x_{0}\cos(\omega t) + \frac{v_{0}}{\omega}\sin(\omega t)\]\end{large}{latex}
\\
or, equivalently
\\
{latex}\begin{large}\[ x(t) = A\cos(\omega t + \phi) \]\end{large}{latex}
\\
h5. Velocity:
\\
{latex}\begin{large}\[ v(t) = -\omega x_{0}\sin(\omega t) + v_{0}\cos(\omega t)\]\end{large}{latex}
\\
or, equivalently:
\\
{latex}\begin{large}\[ v(t) = -A\omega\sin(\omega t + \phi)\]\end{large}{latex}
\\
h5. Acceleration:
\\
{latex}\begin{large}\[ a(t) = -\omega^{2} x_{0}\cos(\omega t) - \omega v_{0} \sin(\omega t) = -\omega^{2} x(t) \]\end{large}{latex}
\\
or, equivalently:
\\
{latex}\begin{large}\[ a(t) = -\omega^{2}A\cos(\omega t+\phi) = -\omega^{2} x(t)\]\end{large}{latex}
----
h2. Diagrammatical Representations
* Acceleration versus time graph.
* Velocity versus time graph.
* Position versus time graph.
----
h2. Relevant Examples
None yet.
----
{search-box}
\\
\\
| !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. | |