Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
{
Wiki Markup
Composition Setup

Excerpt
hiddentrue

System: One point particle constrained to move in one dimension. — Interactions: The particle must experience a force (or torque) that attempts to restore it to equilibrium and is directly proportional to its displacement from that equilibrium.

Introduction to the Model

Description and Assumptions

This model applies to position of a single point particle, or to the angular position of a rigid body, which is constrained to one dimension and experiences a restoring force that is linearly proportional to its displacement from an equilibrium position. This form for the force or torque implies that the equation of motion for the point particle or rigid body will have the form:

Latex
}{composition-setup}

{excerpt:hidden=true}{*}System:* One [point particle] constrained to move in one dimension. --- *Interactions:* The particle must experience a force (or torque) that attempts to [restore|restoring force] it to equilibrium and is directly proportional to its displacement from that equilibrium.{excerpt}

h4. Introduction to the Model

h5. Description and Assumptions

This [model] applies to [position] of a single [point particle], or to the [angular position] of a [rigid body], which is constrained to one dimension and experiences a [restoring force] that is linearly proportional to its displacement from an [equilibrium position].  This form for the force or torque implies that the equation of motion for the [point particle] or [rigid body] will have the form:
{latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega_{\rm osc}^{2}x \]\end{large}{latex}or
{latex}

or

Latex
\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega_{\rm osc}^{2}\theta.\] \end{large}{latex}

As

...

a

...

consequence

...

of

...

this

...

characteristic

...

equation,

...

the

...

position,

...

velocity,

...

and

...

acceleration

...

(or

...

the

...

angular

...

equivalents)

...

will

...

each

...

be

...

sinusoidal

...

functions

...

of

...

time.

...

Simple

...

harmonic

...

motion

...

is

...

sometimes

...

abbreviated

...

SHM,

...

or

...

referred

...

to

...

as

...

"Simple

...

Harmonic

...

Oscillation"

...

(SHO).

...

Learning

...

Objectives

...

Students

...

will

...

be

...

assumed

...

to

...

understand

...

this

...

model

...

who

...

can:

...

  • Define

...

  • the

...

  • terms

...

...

...

  • and

...

...

...

  • .

...

  • Define

...

  • the

...

...

  • ,

...

...

  • ,

...

...

...

...

  • and

...

...

  • of

...

  • oscillatory

...

  • motion.

...

  • Give

...

  • a

...

  • formula

...

  • for

...

  • the

...

...

...

...

  • of

...

  • the

...

  • oscillation

...

  • of

...

  • a

...

...

  • or

...

...

...

...

...

  • .

...

  • Write

...

  • mathematical

...

  • expressions

...

  • for

...

  • the

...

...

  • ,

...

...

  • and

...

...

  • of

...

  • Simple

...

  • Harmonic

...

  • Motion

...

  • as

...

  • functions

...

  • of

...

  • time

...

  • for

...

  • the

...

  • special

...

  • cases

...

  • that

...

  • the

...

  • initial

...

  • velocity

...

  • is

...

  • zero

...

  • or

...

  • the

...

  • initial

...

  • position

...

  • is

...

  • equilibrium.

...

  • Graphically

...

  • represent

...

  • the

...

  • position,

...

  • velocity

...

  • and

...

  • acceleration

...

  • of

...

  • Simple

...

  • Harmonic

...

  • Motion.

...

  • Use

...

  • the

...

  • laws

...

  • of

...

...

  • to

...

  • determine

...

  • the

...

...

...

...

  • of

...

  • a

...

...

  • in

...

  • the

...

  • limit

...

  • of

...

  • very

...

  • small

...

  • displacements

...

  • from

...

  • equilibrium.

...

  • Describe

...

  • the

...

  • consequences

...

  • of

...

...

  • of

...

...

...

  • for

...

  • Simple

...

  • Harmonic

...

  • Motion

...

  • (assuming

...

  • no

...

  • dissipation).

...

Relevant

...

Definitions
Section
{section}{column} {panel:title=Amplitude|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF|borderColor=#FFFFFF|titleBGColor=#FFFFFF} {center}{latex}
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titleBGColor#FFFFFF
titleAmplitude
borderStylesolid
Center
Latex
\begin{large}\[ A \equiv x_{\rm max} = \sqrt{x_{i}^{2} + \left(\frac{v_{i}}{\omega_{
0
\rm osc}}\right)^{2}} \]\end{large}
{latex}{center}{panel} {column}{column} {panel:title=Phase|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF|borderColor=#FFFFFF} {center} {latex}
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titlePhase
borderStylesolid
Center
Latex
\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{i}}{A}\right) = \sin^{-1}\left(\frac{v_{i}}{\omega_{
0
\rm osc} A}\right)\]\end{large}
{latex} {center}{panel} {column}{section} h4.

S.I.M.

...

Structure

...

of

...

the

...

Model

Compatible Systems

A single point particle (or,

...

for

...

the

...

angular

...

version

...

of

...

SHM,

...

a

...

single

...

rigid

...

body

...

).

...

Relevant

...

Interactions

...

The

...

system

...

must

...

be

...

subject

...

to

...

a

...

one-dimensional

...

restoring

...

force

...

(or

...

torque)

...

that

...

varies

...

linearly

...

with

...

the

...

displacement

...

(or

...

angular

...

displacement)

...

from

...

a

...

stable

...

equilibrium

...

position.

Laws of Change

Mathematical Representation
Panel
borderWidth1
titleUsing Initial Time
borderStylesolid

Section
h4. Laws of Change h5. Mathematical Representation {panel:title=Using Initial Time|borderWidth=1|borderStyle=solid} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {center}{latex}
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ x(t) = x_{i}\cos(\omega_{
0
\rm osc} (t-t_{i})) + \frac{v_{i}}{\omega_{
0
\rm osc}}\sin(\omega_{
0
\rm osc} (t-t_{i}))\]\end{large}
{latex}{center} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ v(t) = -\omega_{
0
\rm osc} x_{i}\sin(\omega_{
0
\rm osc} (t-t_{i})) + v_{i}\cos(\omega_{
0
\rm osc} (t-t_{i}))\]\end{large}
{latex}{center} {panel} {column}{section} {section}{column} \\ {panel:title=Acceleration|bgColor=#FFFFFF} {center}{latex
Section
}
Column


Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ a(t) = -\omega_{
0
\rm osc}^{2} x_{i}\cos(\omega_{
0
\rm osc} (t-t_{i})) - \omega_{
0
\rm osc} v_{i} \sin(\omega_{
0
\rm osc} (t-t_{i})) = -\omega_{
0
\rm osc}^{2} x(t) \]\end{large}
{latex}{center} {panel} {column}{section} \\ \\ {panel:title=Using Phase|borderWidth=1|borderStyle=solid|bgColor=#F0F0F0} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {center}{latex}



Panel
bgColor#F0F0F0
borderWidth1
titleUsing Phase
borderStylesolid

Section
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ x(t) = A\cos(\omega_{
0
\rm osc} t + \phi)\]\end{large}
{latex}{center} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ v(t) =-A\omega_{
0
\rm osc}\sin(\omega_{
0
\rm osc} t + \phi)\]\end{large}
{latex}{center} {panel} {column}{column} {panel:title=Acceleration|bgColor=#FFFFFF} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ a(t) =-\omega_{
0
\rm osc}^{2}A\cos(\omega_{
0
\rm osc} t+\phi) =-\omega_{
0
\rm osc}^{2} x(t)\]\end{large}
Diagrammatic Representations

Image Added

Click here for a Mathematica Player application illustrating these representations using phase.

Image Added

Click here to download the (free) Mathematica Player from Wolfram Research

Relevant Examples

...

Toggle Cloak
idPend
Examples involving Pendulums

...

Cloak
idPend
{latex}{center} {panel} {column}{section} h5. Diagrammatic Representations * [position versus time graph] * [velocity versus time graph] * [acceleration versus time graph] |[!images^MathematicaPlayer.png!|^SHM-Phase.nbp]|[Click here|^SHM-Phase.nbp] for a _Mathematica Player_ application \\ illustrating these representations using phase.| |[!images^download_now.gif!|http://www.wolfram.com/products/player/download.cgi]|[Click here|http://www.woldfram.com/products/player/download.cgi] to download the (free) _Mathematica Player_ \\ from [Wolfram Research|http://www.wolfram.com]| h4. Relevant Examples h6. {toggle-cloak:id=Pend} Examples involving Pendulums {cloak:id=Pend} {contentbylabel:AND50falsetrueexample_problem,SHM,pendulum|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Pend} h6. {toggle-cloak:id=
Spr
}
Examples
involving
Springs
{cloak:id=Spr} {contentbylabel: Spr AND50falsetrueexample_problem,SHM,spring|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Spr} h6. {toggle-cloak:id=
RelEx
}
All
Examples
involving
this
Model
{cloak:id=RelEx} {contentbylabel: RelEx AND50falsetrueexample_problem,SHM|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak}