Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Composition Setup

Excerpt
hiddentrue

System: One point particle constrained to move in one dimension. — Interactions: The particle must experience a force (or torque) that attempts to restore it to equilibrium and is directly proportional to its displacement from that equilibrium.

Introduction to the Model

Description and Assumptions

This model applies to position of a single point particle, or to the angular position of a rigid body, which is constrained to one dimension and experiences a restoring force that is linearly proportional to its displacement from an equilibrium position. This form for the force or torque implies that the equation of motion for the point particle or rigid body will have the form:

Latex
Wiki Markup
{composition-setup}{composition-setup}
{table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols}
{tr:valign=top}
{td:width=350px|bgcolor=#F2F2F2}
{live-template:Left Column}
{td}
{td}
h1. Simple Harmonic Motion

{excerpt:hidden=true}*System:* One [point particle] constrained to move in one dimension. --- *Interactions:* The acceleration must be a [sinusoidal function] of time.{excerpt}

h4. {toggle-cloak:id=desc} Description and Assumptions

{cloak:id=desc}
This model applies to a single [point particle] constrained to move in one dimension whose position is a sinusoidal function of time.  Simple harmonic motion is sometimes abbreviated SHM.
{cloak}

h4. {toggle-cloak:id=cues} Problem Cues

{cloak:id=cues}

Any object that experiences a _linear_ restoring force or torque so that the equation of motion takes the form 

{latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega^\omega_{\rm osc}^{2}x \]\end{large}{latex}

or

{latex}

or

Latex
\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega^omega_{\rm osc}^{2}\theta.\] \end{large}{latex}

will experience simple harmonic motion with angular frequency ω.  The prototypical example is an object of mass _m_ attached to a spring with force constant _k_, in which case, by [Hooke's Law]:

{latex}\begin{large}\[ a = -\frac{kx}{m} \]\end{large}{latex}

giving simple harmonic motion with angular frequency {latex}$\sqrt{\dfrac{k}{m}}${latex}.

{cloak}

h4. {toggle-cloak:id=pri} Prior Models

{cloak:id=pri}

* [1-D Motion (Constant Velocity)]
* [1-D Motion (Constant Acceleration)]

{cloak}

h4. {toggle-cloak:id=voc} Vocabulary

{cloak:id=vocab}

* [restoring force]
* [periodic motion]
* [angular frequency]
* [phase]

{cloak}

h2. Models

h4. {toggle-cloak:id=sys} {color:red}Compatible Systems{color}

{cloak:id=sys}

A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]).

{cloak}

h4. {toggle-cloak:id=int} {color:red}Relevant Interactions{color}

{cloak:id=int}

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.

{cloak}

h4. {toggle-cloak:id=def} {color:red} Relevant Definitions{color}

{cloak:id=def}

{section}{column}
h5. Initial Conditions
{latex}

As a consequence of this characteristic equation, the position, velocity, and acceleration (or the angular equivalents) will each be sinusoidal functions of time. Simple harmonic motion is sometimes abbreviated SHM, or referred to as "Simple Harmonic Oscillation" (SHO).

Learning Objectives

Students will be assumed to understand this model who can:

Relevant Definitions
Section
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titleBGColor#FFFFFF
titleAmplitude
borderStylesolid
Center
Latex
\begin{large}\[ 
x_{0} = x(t=0) = -\frac{a(t=0)}{\omega^{2}}\qquad\qquad\qquad\] \[ v_{0} = v(t=0)\]\end{large}{latex} {column}{column}{color:white}_______{color}{column}{column} h5. Amplitude of Motion {latex}\begin{large}\[ A
A \equiv x_{\rm max} = \sqrt{x_{
0
i}^{2} + \left(\frac{v_{
0
i}}{\omega_{\rm osc}}\right)^{2}}
\qquad\qquad\qquad\
 \]\end{large}
{latex} \\ {column}{column} h5. Phase \\ {latex}
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titlePhase
borderStylesolid
Center
Latex
\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{
0
i}}{A}\right) = \sin^{-1}\left(\frac{v_{
0
i}}{\omega_{\rm osc} A}\right)\]\end{large}
{latex} {column}{section} {cloak} h4. {toggle-cloak:id=laws} {color:red}Laws of Change{color} {cloak:id=laws} {section}{column} h5. Position {latex}

S.I.M. Structure of the Model

Compatible Systems

A single point particle (or, for the angular version of SHM, a single rigid body).

Relevant Interactions

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from a stable equilibrium position.

Laws of Change

Mathematical Representation
Panel
borderWidth1
titleUsing Initial Time
borderStylesolid

Section
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ x(t) = x_{
0
i}\cos(\omega_{\rm osc} (t-t_{i})) + \frac{v_{
0
i}}{\omega_{\rm osc}}\sin(\omega_{\rm osc} (t-t_{i}))\
qquad\qquad\qquad\
]\end{large}
{latex} \\ or, equivalently \\ {latex}\
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ 
x
v(t) =
A\cos
 -\omega_{\rm osc} x_{i}\sin(\omega_{\rm osc} (t-t_{i})) + 
\phi
v_{i}\cos(\omega_{\rm osc} (t-t_{i}))\]\end{large}
Section
{latex} {column}{column} h5. Velocity {latex}
Column


Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ 
v
a(t) = -\omega_{\rm osc}^{2} x_{
0
i}\
sin
cos(\omega_{\rm osc} (t-t_{i})
+
) - \omega_{\rm osc} v_{
0
i} \
cos
sin(\omega_{\rm osc} (t-t_{i}))
\qquad\qquad\qquad
 = -\omega_{\rm osc}^{2} x(t) \]\end{large}
{latex} \\ or, equivalently: \\ {latex}\



Panel
bgColor#F0F0F0
borderWidth1
titleUsing Phase
borderStylesolid

Section
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ 
v
x(t) = 
-
A\
omega\sin
cos(\omega_{\rm osc} t + \phi)\]\end{large}
{latex} {column}{column} h5. Acceleration {latex}
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ 
a
v(t) =
-A\
omega^{2} x_{0}\cos(\omega t) - \omega v_{0} \sin(\omega t) = -\omega^{2} x(t) \qquad
omega_{\rm osc}\sin(\omega_{\rm osc} t + \phi)\]\end{large}
{latex} \\ or, equivalently: \\ {latex}\
Column
Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ a(t) =
-
\omega^
\omega_{\rm osc}^{2}A\cos(\omega_{\rm osc} t+\phi) =
-
\omega^
\omega_{\rm osc}^{2} x(t)\]\end{large}
{latex} {column}{section} {cloak} h4. {toggle-cloak:id=diag} {color:red}Diagrammatical Representations{color} {cloak:id=diag} * Acceleration versus time graph. * Velocity versus time graph. * Position versus time graph. {cloak} h2. Relevant Examples None yet. ---- {search-box} \\ \\ {td} {tr} {table} {live-template:RELATE license}
Diagrammatic Representations

Image Added

Click here for a Mathematica Player application illustrating these representations using phase.

Image Added

Click here to download the (free) Mathematica Player from Wolfram Research

Relevant Examples

...

Toggle Cloak
idPend
Examples involving Pendulums

...

Cloak
idPend
AND50falsetrueexample_problem,SHM,pendulum Pend
Spr Examples involving Springs
Spr AND50falsetrueexample_problem,SHM,spring Spr
RelEx All Examples involving this Model
RelEx AND50falsetrueexample_problem,SHM