Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Composition Setup
HTML Table
border1
cellpadding8
cellspacing0
rulescols
framevoid
Wiki Markup
{composition-setup} cloak.toggle.type=custom cloak.toggle.open=copyright and waiver^plus.gif cloak.toggle.close=copyright and waiver^minus.gif {composition-setup} {table:rules=cols|cellpadding=8|cellspacing=0|border=1|frame=void} {tr:valign=top}{td:width=330px|bgcolor=#F2F2F2} {live-template:Left Column} {td} {td} {excerpt:hidden=true}*[System|system]:* Any number of [rigid bodies|rigid body] or [point particles|point particle] whose angular momentum is constrained to one dimension. --- *[Interactions|interaction]:* Any that respect the [one-dimensional angular momentum|angular momentum (one-dimensional)].{excerpt} h1. One-Dimensional Angular Momentum and Torque h4. {toggle-cloak:id=desc} Description and Assumptions {cloak:id=desc} 1-D Angular Momentum and Torque is a subclass of the general [Angular Momentum and External Torque] model in which a system of rigid bodies is constrained to move only in a plane (usually taken to be the _xy_ plane) with each body's angular momentum therefore directed along an axis perpendicular to the plane (along the z-axis). Under these conditions, the angular momentum is a one-dimensional vector, and the directional subscript (z) is generally omitted. \\ {cloak} h4. {toggle-cloak:id=cues} Problem Cues {cloak:id=cues} Systems involving several rigid bodies that interact.  The integral form of this model is used in essentially all problems involving a collision where at least one body can rotate (e.g. a person jumping onto a rotating merry-go-round, a rotating disk falling onto another rotating object) or that involve a changing moment of inertia (spinning skater pulling her arms into her body). The differential form is useful in situations that involve the acceleration of a _system_  that involves rotation and acceleration and for which the forces are well understood (a single object can be treated with the simpler [Single-Axis Rotation of a Rigid Body]). For example, it could be used to solve for the acceleration of a modified Atwood's machine which involves a massive pulley that accelerates. \\ {cloak} h4. {toggle-cloak:id=pri} Prior Models {cloak:id=pri} * [Momentum and External Force] * [Point Particle Dynamics] * [Single-Axis Rotation of a Rigid Body]is helpful, but not necessary \\ {cloak} h4. {toggle-cloak:id=vocab} Vocabulary and Procedures {cloak:id=vocab} * [torque (one-dimensional)] * [angular momentum (one-dimensional)] * [moment of inertia] \\ {cloak} h2. Model h4. {toggle-cloak:id=sys} {color:red} Compatible Systems {color} {cloak:id=sys|visible=true} The [system] can be composed of any number of [rigid bodies|rigid body] and [point particles|point particle]. The system must either be constrained to move in such a way that the [angular momentum|angular momentum (one-dimensional)] will be one-dimensional, or else the symmetries of the situation ([system] plus [interactions|interaction]) must guarantee that the [angular momentum|angular momentum (one-dimensional)] will remain one dimensional. \\ {cloak} h4. {toggle-cloak:id=int} {color:red} Relevant Interactions {color} {cloak:id=int|visible=true} External interactions must be explicitly given as torques, or as forces with their point of application or [moment arm] about the chosen axis specified along with their magnitude and direction.  (Internal interactions do not change the angular momentum of the system.) \\ {cloak} h4. {toggle-cloak:id=def} {color:red} Relevant Definitions {color} {cloak:id=def|visible=true} Angular momentum about axis _a_: {latex}\begin{large}\[ L_{a} = I_{cm}\omega + m\vec{r}_{{\rm cm},a}\times \vec{v}_{{\rm cm}} \]\end{large}{latex} \\ {cloak} h4. {toggle-cloak:id=laws} {color:red} Laws of Change {color} {cloak:id=laws|visible=true} {section}{column} \\ h5. Differential Form \\ {latex}
Table Row (tr)
valigntop
Table Cell (td)

Excerpt
hiddentrue

System: Any number of rigid bodies or point particles whose angular momentum is constrained to lie along a certain axis. — Interactions: Any that respect the one-dimensional angular momentum.

Introduction to the Model

Description and Assumptions

1-D Angular Momentum and Torque is a subclass of the general Angular Momentum and External Torque model in which a system of rigid bodies is constrained to move only in a plane (usually taken to be the xy plane) with each body's angular momentum therefore directed along an axis perpendicular to the plane (along the z-axis). Under these conditions, the angular momentum is a one-dimensional vector, and the directional subscript (z) is generally omitted.

Learning Objectives

Students are assumed to understand this model who can:

Relevant Definitions

Angular momentum about axis a:

Latex
\begin{large}\[ L_{a} = I_{cm}\omega + m\vec{r}_{{\rm cm},a}\times \vec{v}_{{\rm cm}} \]\end{large}

S.I.M. Structure of the Model

Compatible Systems

The system can be composed of any number of rigid bodies and point particles. The system must either be constrained to move in such a way that the angular momentum will be one-dimensional, or else the symmetries of the situation (system plus interactions) must guarantee that the angular momentum will remain one dimensional.

Relevant Interactions

External interactions must be explicitly given as torques, or as forces with their point of application or moment arm about a chosen axis of rotation specified along with their magnitude and direction.  (Internal interactions do not change the angular momentum of the system.)

Laws of Change

Mathematical Representation
Section
Column


Differential Form


Latex
\begin{large}\[ \sum_{\rm system}\frac{dL_{a}}{dt} = \sum_{\rm external} \tau_{a} \]\end{large}
{latex} {column}{column} \\ h5. Integral Form \\ {latex}
Column


Integral Form


Latex
\begin{large}\[ \sum_{\rm system}L_{a,f} = \sum_{\rm system}L_{a,i} + \int \:\sum_{\rm external} \tau_{a} \:dt \]\end{large}
{latex}

where

the

last

term

is

called

the

"angular

impulse" {column}{section} \\ {cloak} h4. {toggle-cloak:id=diag} {color:red} Diagrammatic Representations {color} {cloak:id=diag|visible=true} * [Force diagram|force diagram]. * [Initial-state final-state diagram|initial-state final-state diagram]. \\ {cloak} h2. Relevant Examples h4. {toggle-cloak:id=cons} Examples Involving Constant Angular Momentum {cloak:id=cons} {contentbylabel:constant_angular_momentum|showSpace=false|showLabels=true|excerpt=true|maxResults=50} \\ {cloak} h4. {toggle-cloak:id=rws} Examples Involving Rolling without Slipping {cloak:id=rws} {contentbylabel:

impulse"

Diagrammatic Representations

Relevant Examples

Toggle Cloak
idcons
Examples Involving Constant Angular Momentum
Cloak
idcons
falsetruetrue50constant_angular_momentum


Toggle Cloak
idrws
Examples Involving Rolling without Slipping
Cloak
idrws
falsetruetrueAND50angular_momentum,rolling_without_slipping
|showSpace=
false
|showLabels=
true
|excerpt=
true
|operator=
AND
|maxResults=
50
} {contentbylabel:
constant_angular_momentum,rolling_without_slipping
|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} \\ {cloak} h4. {


Toggle Cloak
:
id
=
par
}
Examples
Involving
the
Parallel
Axis
Theorem
{
Cloak
:
id
=par} {contentbylabel:
par
falsetruetrueAND50angular_momentum,parallel_axis
|showSpace=
false
|showLabels=
true
|excerpt=
true
|operator=
AND
|maxResults=
50
} {contentbylabel:
constant_angular_momentum,parallel_axis
|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50} \\ {cloak} h4. {


Toggle Cloak
:
id
=
all
}
All
Examples
Using
this
Model
{
Cloak
:
id
=all} {contentbylabel:
all
falsetruetrueOR50angular_momentum,constant_angular_momentum
|showSpace=false|showLabels=true|excerpt=true|operator=OR|maxResults=50} {cloak} \\ \\ {search-box} \\ \\ {td} {td:width=235} !skater.jpg! \\ \\ [!well.jpg|alt="How fast does a bucket fall down a well? Click the image to investigate."!|Down the Well] \\ \\ Pictures courtesy of: [Wikimedia Commons|http://commons.wikimedia.org] user [Dobromila|http://commons.wikimedia.org/wiki/User:Dobromila] \\ [Wikimedia Commons|http://commons.wikimedia.org] user [Vmenkov|http://commons.wikimedia.org/wiki/User:Vmenkov] {td} {tr} {table} {live-template:RELATE license} \\



Search Box



Table Cell (td)
width235

Image Added

Image Added

Pictures courtesy of:
Wikimedia Commons user Dobromila
Wikimedia Commons user Vmenkov

Wiki Markup
{html}
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-11762009-2");
pageTracker._trackPageview();
} catch(err) {}</script>
{html}