Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
{
Wiki Markup
Composition Setup

Excerpt
hiddentrue

System: One point particle constrained to move in one dimension. — Interactions: The particle must experience a force (or torque) that attempts to restore it to equilibrium and is directly proportional to its displacement from that equilibrium.

Introduction to the Model

Description and Assumptions

This model applies to position of a single point particle, or to the angular position of a rigid body, which is constrained to one dimension and experiences a restoring force that is linearly proportional to its displacement from an equilibrium position. This form for the force or torque implies that the equation of motion for the point particle or rigid body will have the form:

Latex
}{composition-setup}{table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols}
{tr:valign=top}
{td}

{excerpt:hidden=true}{*}System:* One [point particle] constrained to move in one dimension. --- *Interactions:* The particle must experience a force (or torque) that attempts to [restore|restoring force] it to equilibrium and is directly proportional to its displacement from that equilibrium.{excerpt}
h4. Description and Assumptions

This model applies to position of a single [point particle], or to the angle of a rigid body, constrained to move in one dimension that experiences a linear restoring force toward its equilibrium.  Consequently, its position, velocity, and acceleration will each be a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM, or referred to as "Simple Harmonic Oscillation" (SHO).

h4. Problem Cues

Any object that experiences a _linear_ restoring force or torque so that the equation of motion takes the form
{latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega_{0\rm osc}^{2}x \]\end{large}{latex}or
{latex}

or

Latex
\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega_{0\rm osc}^{2}\theta.\] \end{large}{latex}will experience simple harmonic motion with [natural|natural frequency] [angular frequency] ω{~}0~. The most common systems whose equations of motion take this form are a [mass on a spring] or a [pendulum] (in the small-angle approximation).  Any problem requesting or giving position or velocity vs. time for one of these systems will likely require the use of the Simple Harmonic Motion model.

Another cue that Simple Harmonic Motion is occurring is if the position, the velocity, or the acceleration are sinusoidal in time (in which case they all will be sinusoidal).


h4. Learning Objectives

Students will be assumed to understand this model who can:

* Define the terms [equilibrium position] and [restoring force].
* Define the [amplitude], [period], [natural|natural frequency] [angular frequency] and [phase] of oscillatory motion.
* Give a formula for the [natural|natural frequency] [angular frequency] of the oscillation of a [pendulum] or [mass on a spring].
* Write mathematical expressions for the [position], [velocity] and [acceleration] of Simple Harmonic Motion as functions of time for the special cases that the initial velocity is zero or the initial position is equilibrium.
* Graphically represent the position, velocity and acceleration of Simple Harmonic Motion.
* Use the laws of [dynamics] to determine the [natural|natural frequency] [angular frequency] of a [system] in the limit of very small displacements from equilibrium.
* Describe the consequences of [conservation|conserved] of [mechanical energy] for Simple Harmonic Motion (assuming no dissipation).


h1. Models


h4. Compatible Systems

A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]).

h4. Relevant Interactions

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from a stable equilibrium position.

h4. Relevant Definitions

{section}{column}

{panel:title=Amplitude|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF}
{panel}
{center}{latex}

As a consequence of this characteristic equation, the position, velocity, and acceleration (or the angular equivalents) will each be sinusoidal functions of time. Simple harmonic motion is sometimes abbreviated SHM, or referred to as "Simple Harmonic Oscillation" (SHO).

Learning Objectives

Students will be assumed to understand this model who can:

Relevant Definitions
Section
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titleBGColor#FFFFFF
titleAmplitude
borderStylesolid
Center
Latex
\begin{large}\[ A \equiv x_{\rm max} = \sqrt{x_{i}^{2} + \left(\frac{v_{i}}{\omega_{
0
\rm osc}}\right)^{2}} \]\end{large}
{latex}{center}{panel:Amplitude} {panel} {column}{column} {panel:title=Phase|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF} {panel}{center} {latex}
Column
Panel
borderColor#FFFFFF
bgColor#FFFFFF
borderWidth1
titlePhase
borderStylesolid
Center
Latex
\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{i}}{A}\right) = \sin^{-1}\left(\frac{v_{i}}{\omega_{
0
\rm osc} A}\right)\]\end{large}

S.I.M. Structure of the Model

Compatible Systems

A single point particle (or, for the angular version of SHM, a single rigid body).

Relevant Interactions

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from a stable equilibrium position.

Laws of Change

Mathematical Representation
Panel
borderWidth1
titleUsing Initial Time
borderStylesolid

Section
{latex} {center}{panel:Phase} {panel} {column}{section} h4. Laws of Change {panel:title=Using Initial Time|borderWidth=1|borderStyle=solid} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {panel} {center}{latex}
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ x(t) = x_{i}\cos(\omega_{
0
\rm osc} (t-t_{i})) + \frac{v_{i}}{\omega_{
0
\rm osc}}\sin(\omega_{
0
\rm osc} (t-t_{i}))\]\end{large}
{latex}{center} {panel:Position} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {panel} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ v(t) = -\omega_{
0
\rm osc} x_{i}\sin(\omega_{
0
\rm osc} (t-t_{i})) + v_{i}\cos(\omega_{
0
\rm osc} (t-t_{i}))\]\end{large}
{latex}{center} {panel:Velocity} {panel} {column}{section} {section}{column} \\ {panel:title=Acceleration|bgColor=#FFFFFF} {panel} {center}{latex}
Section
Column


Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ a(t) = -\omega_{
0
\rm osc}^{2} x_{i}\cos(\omega_{
0
\rm osc} (t-t_{i})) - \omega_{
0
\rm osc} v_{i} \sin(\omega_{
0
\rm osc} (t-t_{i})) = -\omega_{
0
\rm osc}^{2} x(t) \]\end{large}
{latex}{center} {panel:Acceleration} {panel} {column}{section} {panel:Using} {panel} {panel:title=Using Phase|borderWidth=1|borderStyle=solid|bgColor=#F0F0F0} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {panel} {center}{latex}



Panel
bgColor#F0F0F0
borderWidth1
titleUsing Phase
borderStylesolid

Section
Column
Panel
bgColor#FFFFFF
titlePosition
Center
Latex
\begin{large}\[ x(t) = A\cos(\omega_{
0
\rm osc} t + \phi)\]\end{large}
{latex}{center} {panel:Position} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {panel} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleVelocity
Center
Latex
\begin{large}\[ v(t) =-A\omega_{
0
\rm osc}\sin(\omega_{
0
\rm osc} t + \phi)\]\end{large}
{latex}{center} {panel:Velocity} {panel} {column}{column} {panel:title=Acceleration|bgColor=#FFFFFF} {panel} {center}{latex}
Column
Panel
bgColor#FFFFFF
titleAcceleration
Center
Latex
\begin{large}\[ a(t) =-\omega_{
0
\rm osc}^{2}A\cos(\omega_{
0
\rm osc} t+\phi) =-\omega_{
0
\rm osc}^{2} x(t)\]\end{large}
{latex}{center} {panel:Acceleration} {panel} {column}{section} {panel:Using Phase} {panel} h4. Diagrammatic Representations * [position versus time graph] * [velocity versus time graph] * [acceleration versus time graph] h1. Relevant Examples h4. {toggle-cloak:id=Pend} Examples involving Pendulums {cloak:id=Pend} {contentbylabel:
Diagrammatic Representations

Image Added

Click here for a Mathematica Player application illustrating these representations using phase.

Image Added

Click here to download the (free) Mathematica Player from Wolfram Research

Relevant Examples

...

Toggle Cloak
idPend
Examples involving Pendulums

...

Cloak
idPend
AND50falsetrueexample_problem,SHM,pendulum|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Pend} h4. {toggle-cloak:id=
Spr
}
Examples
involving
Springs
{cloak:id=Spr} {contentbylabel: Spr AND50falsetrueexample_problem,SHM,spring|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Spr} h4. {toggle-cloak:id=
RelEx
}
All
Examples
involving
this
Model
{cloak:id=RelEx} {contentbylabel: RelEx AND50falsetrueexample_problem,SHM|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak} ---- {search-box}\\ \\ {td}{tr}{table}