You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

Question 1

A 100 ohm resistor is held at a constant temperature of 300 A current of 10 Amperes is passed through the resistor for 300 seconds. The electrical current is supplied by a reversible electrochemical cell (battery).

What is the change in entropy of the resistor assuming it remains at 300 K?

<p>
</p>

Resistor remains unchanged. There is no change in state function.

<center>

<br>

<math>\Delta S_

Unknown macro: {resistor}

= 0</math>

<br>

</center>

What is the change in entropy of the universe (universe = system + surroundings, including the battery)?

<p>
</p>

The net effect of the process is that electrical work is converted to heat in an environment at 300 K

<center>

<br>

<math>Q=W</math>

<br>

<math>Q = I \cdot R \cdot T</math>

<br>

<math>Q = 10 \cdot 100 \cdot 300</math>

<br>

<math>Q = 300 kJ</math>

<br>

<math>\Delta S_

Unknown macro: {env}

= \frac

Unknown macro: {300 kJ}
Unknown macro: {300 K}

</math>

<br>

<math>\Delta S_

= \frac

Unknown macro: {1 kJ}
Unknown macro: {K}

</math>

<br>

</center>

Note that since the battery is operating reversibly the net contribution of its process to the change in the entropy of the universe is zero.

<p>
</p>

What is the internal energy change of the universe?

<center>

<br>

<math>\Delta E_

Unknown macro: {universe}

= 0</math>

<br>

</center>

This is true since the energy is conserved.

Question 2

Describe accurately the concept of adiabatic demagnetization. Use equations or pictures if needed.

A key property is listed below.

<center>

<br>

<math>\left ( \frac

Unknown macro: { partial S }
Unknown macro: { partial H }

\right )_T < 0</math>

<br>

</center>

This relation is proven from a Maxwell relation, which follows from a differential.

<center>

<br>

<math>\left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial H}

\right )_T = \left ( \frac

Unknown macro: {partial T}

\right )_H</math>

<br>

<math>\phi = U - TS + PV - MH</math>

<br>

<math>d \phi = -SdT + VdP - MdH </math>

<br>

</center>

Since it is true that <math>\left (\partial M / \partial T \right )_H</math> is less than zero, <math>\left (\partial S / \partial H \right )_T</math> negative. Consider curves of <math>S(T)</math> at constant <math>H</math>.

<center>

Unable to render embedded object: File (Adiabatic_demagnetization.PNG) not found.

</center>

Adiabatic demagnetization consists of two steps.

  • Isothermal application of field
  • Insulate material and turn off field. There is isentropic demagnetization. The system moves back to a state with <math>H=0</math>, and therefore the temperature drops.

<p>
</p>

For a paramagnetic material that obeys the Curie Law, <math>M = \frac

Unknown macro: {kappa V}
Unknown macro: {T}

H</math>, express <math>\left ( \frac

Unknown macro: { partial T }

\right )_S</math> in terms of the Curie constant, the heat capacity under constant field and other fundamental properties of the material.

<center>

<br>

<math>\left ( \frac

Unknown macro: {partial T}
Unknown macro: {partial H}

\right )_S = - \frac{ \left ( \frac

Unknown macro: { partial H }

\right )_T }{ \left ( \frac

Unknown macro: { partial S }

{ \partial T \right )_H</math>

<br>

<math>\left ( \frac

Unknown macro: {partial S}
Unknown macro: {partial H}

\right )_T = \left ( \frac

Unknown macro: {partial M}
Unknown macro: {partial T}

\right )_H </math>

<br>

<math>\left ( \frac

Unknown macro: {partial T}

\right )_H = \frac

Unknown macro: {C_H}
Unknown macro: {T}

</math>

<br>

<math>\left ( \frac

Unknown macro: {partial H}

\right )_S = \frac{ -T \left ( \frac

Unknown macro: {partial M}
Unknown macro: {partial T}

\right )_H}

Unknown macro: {C_H}

</math>

<br>

<math>M = \frac

Unknown macro: {kappa V}
Unknown macro: {T}

H</math>

<br>

<math>\left ( \frac

Unknown macro: {partial T}

\right )_H = - \frac

Unknown macro: {kappa V}
Unknown macro: {T^2}

H</math>

<br>

<math>\left ( \frac

Unknown macro: { partial T }

\right )_S = \frac

Unknown macro: { kappa V H }
Unknown macro: { C_H T}

</math>

</center>

Question 3

A box at constant volume and in thermal equilibrium with the environment contains an internal partition which separates two A-B liquid solutions with different concentrations of A. The internal partition has the remarkable property that its displacement (<math>\delta V</math>) and the flow of A species through it are coupled by the relation <math>\delta V = K \delta n_A</math>. The partition is diathermal (lets heat through) and is impermeable to B. Define the equilibrium criterium for A in terms of its chemical potential and the pressure on each side. Explain reasoning and show derivation.

<p>
</p>

The total system is at constant volume and temperature hence its Hemholtz free energy is minimal with resepct to internal degrees of freedom.

<center>

<br>

<math>dF^

Unknown macro: {tot}

= dF^

Unknown macro: {alpha}

+ dF^

Unknown macro: {beta}

</math>

<br>

<math>dF^

= -S^

Unknown macro: {alpha}

dT^

- p^

Unknown macro: {alpha}

dV^

+ \mu_A^

Unknown macro: {alpha}

dn_A^

-S^

Unknown macro: {beta}

dT^

- p^

Unknown macro: {beta}

dV^

+ \mu_A^

Unknown macro: {beta}

dn_A^

</math>

<br>

<math> dV^

Unknown macro: {alpha}

= -dV^

Unknown macro: {beta}

</math>

<br>

<math>dn_A^

= -dn_A^

Unknown macro: {beta}

</math>

<math>dF^

Unknown macro: {tot}

= - \left ( p^

Unknown macro: {alpha}

- p^

\right ) dV^

Unknown macro: {alpha}

+ \left ( \mu_A^

- \mu_A^

Unknown macro: {beta}

dn_A^

Unknown macro: {alpha}

\right )</math>

<br>

</center>

If <math>dV^

</math> and <math>dn_A^

Unknown macro: {alpha}

</math> were independent, equilibrium would require that <math>p^

= p^

</math> and <math>\mu_A^

Unknown macro: {alpha}

= \mu_A^

Unknown macro: {beta}

</math>. However <math>dV^

</math> and <math>dn_A^

Unknown macro: {alpha}

</math> are not independent.

<center>

<br>

<math>dV^

= k dn_A^

Unknown macro: {alpha}

</math>

<br>

<math>dF^

Unknown macro: {tot}

= \left [\left ( \frac{ \mu_A^

- \mu_A^

Unknown macro: {beta}

}

Unknown macro: {k}

\right )- \left (p^

Unknown macro: {alpha}

- p^

\right ) \right] dV^

Unknown macro: {alpha}

</math>

<br>

</center>

The expression above is to equal to zero at equilibrium.

<center>

<br>

<math>\mu_A^

- k p^

Unknown macro: {alpha}

= \mu_A^

Unknown macro: {beta}
  • k p^

</math>

<br>

</center>

Note that if <math>k= \overline

Unknown macro: {V}

_A</math> is a condition of an osmotic system.

Question 4

At 1 atm pressure, iron undergoes an allotropic (structural) transformation from -iron (fcc) to -iron (bcc) at 912 C (with <math>\gamma</math> stable above 912 C and stable below 912 C). The enthalpy difference (per mole of Fe) between <math>\alpha</math> and <math>\gamma</math> at 912 C is Othe available data is:

<center>

<br>

<math>\Delta \underline H^

Unknown macro: {gamma right alpha}

= \underline H^

- \underline H^

Unknown macro: {gamma}

</math>

<br>

<math>\Delta \underline H^

Unknown macro: {gamma right alpha}

= -940 \frac

Unknown macro: {J}
Unknown macro: {mole}

</math>

<br>

</center>

Other available data is below:

<center>

<br>

<math>c_P^

Unknown macro: {alpha}

= 40 \frac

Unknown macro: {mole cdot K}

</math>

<br>

<math>c_P^

= 33 \frac

Unknown macro: {J}
Unknown macro: {mole cdot K}

</math>

<br>

<math> \underline

Unknown macro: {V}

^

Unknown macro: {alpha}

= 7.346 \times 10^{-6} \frac

Unknown macro: {m^3}
Unknown macro: {mole}

</math>

<br>

<math> \underline

^

Unknown macro: {alpha}

= 7.284 \times 10^{-6} \frac

Unknown macro: {m^3}
Unknown macro: {mole}

</math>

<br>

</center>

Assume that heat capacities are temperature independent in the temperature range of interest.

<p>
</p>

Let <math>T_o</math> be the reversible transformation temperature, <math>911 C</math>, and <math>T</math> be the actual transformation temperature, <math>870 C</math>.

<p>
</p>

(a) What is the heat of transformation when one mole of Fe transforms from <math>\gamma</math> to <math>\alpha</math> at T = 870 C and at 1 atm.

<p>
</p>

In general, the expression below of enthalpy is true.

<center>

<br>

<math>dH = Cp dT</math>

<br>

<math>H(T) - H(T_o) = \int_

Unknown macro: {T_o}

^T C_p dT</math>

<br>

<math>H(T) - H(T_o) = C_p (T - T_o)</math>

<br>

<math>\Delta \underline H^

Unknown macro: {gamma right alpha}

(T) = \underline H^

(T) - \underline H^

Unknown macro: {gamma}

(T)</math>

<br>

<math>\Delta \underline H^

Unknown macro: {gamma right alpha}

(T) = \Delta \underline H^

(T_o) + \Delta C_p^

Unknown macro: {gamma right alpha}

(T - T_o)</math>

<br>

<math>\Delta H^

(T) = -1234 \frac

Unknown macro: {mole}

</math>

<br>

</center>

(b) What is the entropy of transformation of one mole of Fe at T = 870 C and 1 atm.

<p>
</p>

In general, the equation below relating entropy to heat capacity is true.

<center>

<br>

<math>dS = \frac

Unknown macro: {Cp}
Unknown macro: {T}

dT</math>

<br>

<math>S(T) - S(T_o) = \int_

Unknown macro: {T_o}

^T \frac

Unknown macro: {T}

dT</math>

<br>

<math>S(T) - S(T_o) = C_p \ln \frac

Unknown macro: {T_o}

</math>

<br>

<math>\Delta S^

Unknown macro: {gamma right alpha}

(T) = \Delta S^

(T_o) + \Delta C_p^

Unknown macro: {gamma right alpha}

\ln \left ( \frac

Unknown macro: {T}

\right )</math>

<br>

<math>\Delta S^

Unknown macro: {gamma right alpha}

(T) = -1.046 \frac

Unknown macro: {J}
Unknown macro: {mole K}

</math>

<br>

</center>

(c) What is the change in the entropy of the universe when one mole of iron transformas from <math>\gamma</math> to <math>\alpha</math> at 870 C and at 1 atm.

<center>

<br>

<math>\Delta_

= \Delta S_

Unknown macro: {solid}

+ \Delta S_

Unknown macro: {environment}

</math>

<br>

<math>\Delta S_

= -1.046 \frac

Unknown macro: {J}
Unknown macro: {mole K}

</math>

<br>

<math>\Delta S_

Unknown macro: {environment}

= \frac

Unknown macro: {Q}
Unknown macro: {T}

</math>

<br>

<math>\Delta S_

= \frac{- \Delta H^

Unknown macro: {gamma right alpha}

(T)}

Unknown macro: {T}

</math>

<br>

<math>\Delta S_

Unknown macro: {environment}

= \frac

Unknown macro: {1234}
Unknown macro: {1143}

</math>

<br>

<math>\Delta S_

= 1.08 \frac

Unknown macro: {mole K}

</math>

<br>

</center>

The term <math>Q</math> is the heat given off to the environment by the transforming solid at the transformation temperature T = 870 C.

<center>

<br>

<math>\Delta S_

Unknown macro: {universe}

= -1.046 + 1.08</math>

<br>

<math>\Delta S_

= 0.034</math>

<br>

</center>

The change of entropy is and should be greater than zero since the transformation occurs spontaneously and irreversibly.

<p>
</p>

(d) What is the equilibrium transformation temperature at P = 1000 atm.

<center>

<br>

<math>\frac

Unknown macro: {partial P^*}
Unknown macro: {partial T^*}

= \frac

Unknown macro: { Delta H }
Unknown macro: { T^* Delta V }

</math>

<br>

<math>P^* - P^*_o = \frac

Unknown macro: {Delta H}
Unknown macro: {Delta V}

\ln \left ( \frac

Unknown macro: { T^* }
Unknown macro: { T_o^* }

\right )</math>

<br>

<math> \Delta H = \Delta \underline H^

Unknown macro: {gamma right alpha}

</math>

<br>

<math> \Delta H = -940 </math>

<br>

<math> \Delta V = \Delta \underline V^

</math>

<br>

<math> \Delta V = \Delta \underline V^

Unknown macro: {alpha}
  • \underline V^

</math>

<br>

<math> \Delta V = 0.062 \cdot 10^{-6} </math>

<br>

<math> P_o^* = 101327 Pa </math>

<br>

<math> P_o^* = 101327000 Pa </math>

<br>

<math> T_o^* = 1185 K </math>

<br>

<math>P^* - P_o^* = \frac

Unknown macro: {Delta V}

\ln \left ( \frac

Unknown macro: {T^*}
Unknown macro: {T_o^*}

\right )</math>

<br>

<math>T = 1177 K</math>

<br>

</center>

Question 5

A small amount of liquid water in equilibrium with its pure vapor is contained in a piston of volume <math>V_o</math> and at a temperature of 25 C. The volume <math>V_o</math> is such that there is one mole of vapor. The system is slowly compressed isothermally down to a volume <math>\frac

Unknown macro: {V_o}
Unknown macro: {2}

</math>.

<p>
</p>

Data:

  • At 25 C the vapor pressure of water is 0.03 atm.
  • The enthalpy of evaporation for water is about 40 kJ / mole and can be taken as independent of temperature and pressure for this problem.
  • You can ignore the contribution of the liquid water to the volume of the container.

<p>
</p>

(a) What is the final pressure of the system?

<p>
</p>

Since temperature remains at 25 C, pressure of <math>H_2 O</math> remains at 0.03 atm. This is the equilibrium pressure at that temperature.

(b) What is the entropy change of the system?

<p>
</p>

The terms <math>P</math>, <math>R</math>, and <math>T</math> are constant and the volume is reduced by one half. Therefore, one-half of the moles have condensed.

<center>

<br>

<math>\Delta \underline S = \frac

Unknown macro: {1}

\frac

Unknown macro: {Delta underline H}
Unknown macro: {T}

</math>

<br>

<math>\Delta \underline S = \frac

Unknown macro: {1}
Unknown macro: {2}

\left ( \frac

Unknown macro: {40000}
Unknown macro: {298}

\right )</math>

<br>

<math>\Delta \underline S = 67 \frac

Unknown macro: {J}

</math>

<br>

</center>

Question 6

The partial molar volume of species when present in a liquid solution is smaller thant the volume of in a pure solid state. Will the solubility of in the liquid solution increase or decrease under pressure? Explain briefly.

<center>

<br>

<math>\frac

Unknown macro: { partial mu_i }
Unknown macro: { partial p }

= \overline V_i</math>

<br>

</center>

In solution, <math>\overline V_i</math> is smaller than that of that of the solid. Therefore, the chemical potential in solid will rise more with pressure than chemical potential in liquid. The maximum possible concentration will increase.

  • No labels