You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

Also known as the vector product, the cross product is a way of multiplying two vectors to yield another vector.

Page Contents

Use in Physics

In mechanics, the cross product is used in calculating [torque] and [angular momentum]. The cross product is also used in introductory electricity and magnetism. Calculations involving the production and effects of magnetic fields generally involve the cross product.

Calculating Cross Products

Unit Vector Cross Products

By definition:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[\hat

Unknown macro: {i}

\times \hat

Unknown macro: {j}

= \hat

Unknown macro: {k}

]\end

and the same holds for even permutations of the order of the unit vectors, thus:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {j}

\times \hat

Unknown macro: {k}

= \hat

Unknown macro: {i}

]
[ \hat

\times \hat

Unknown macro: {i}

= \hat

]\end

Odd permutations reverse the sign:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {j}

\times\hat

Unknown macro: {i}

= -\hat

Unknown macro: {k}

]
[\hat

\times\hat

= -\hat

Unknown macro: {i}

]
[\hat

\times\hat

Unknown macro: {k}

= -\hat

Unknown macro: {j}

]\end

and the cross product of any vector with itself is zero:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {i}

\times\hat

= 0]
[\hat

Unknown macro: {j}

\times\hat

= 0]
[\hat

Unknown macro: {k}

\times\hat

= 0]\end

Note that reversing the order of the two vectors being multiplied switches the sign of the result.

Using this definition, it is possible to find the componentwise cross product of two vectors:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {A}

\timex\vec

Unknown macro: {B}

= (A_

Unknown macro: {x}

\hat

Unknown macro: {i}

+ A_

Unknown macro: {y}

\hat

Unknown macro: {j}

+ A_

Unknown macro: {z}

\hat

Unknown macro: {k}

) \times (B_

\hat

Unknown macro: {i}

+ B_

Unknown macro: {y}

\hat_

Unknown macro: {j}

+B_

Unknown macro: {z}

\hat

Unknown macro: {k}

) = A_

Unknown macro: {x}

B_

\hat

\times\hat

Unknown macro: {i}

+ A_

Unknown macro: {x}

B_

Unknown macro: {y}

\hat

\times\hat

Unknown macro: {j}

+ A_

Unknown macro: {x}

B_

Unknown macro: {z}

\hat

Unknown macro: {i}

\times\hat

Unknown macro: {k}

+ A_

Unknown macro: {y}

B_

\hat

\times\hat

Unknown macro: {i}

+A_

Unknown macro: {y}

B_

\hat

Unknown macro: {j}

\times\hat

+A_

Unknown macro: {y}

B_

Unknown macro: {z}

\hat

Unknown macro: {j}

\times\hat

Unknown macro: {k}

+A_

B_

Unknown macro: {x}

\hat

Unknown macro: {k}

\times\hat

+A_

Unknown macro: {z}

B_

Unknown macro: {y}

\hat

Unknown macro: {k}

\times\hat

Unknown macro: {j}

+ A_

B_

Unknown macro: {z}

\hat

Unknown macro: {k}

\times\hat

]\end

Using the relationships given above for the cross product of unit vectors, we have:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ A_

Unknown macro: {x}

B_

Unknown macro: {y}

\hat

Unknown macro: {k}

- A_

B_

Unknown macro: {z}

\hat

Unknown macro: {j}

-A_

Unknown macro: {y}

B_

Unknown macro: {x}

\hat

Unknown macro: {k}

+A_

B_

\hat

Unknown macro: {i}

+ A_

Unknown macro: {z}

B_

Unknown macro: {x}

\hat

Unknown macro: {j}

-A_

B_

Unknown macro: {y}

\hat

= (A_

Unknown macro: {y}

B_

Unknown macro: {z}

-A_

B_

)\hat

Unknown macro: {i}

+ (A_

Unknown macro: {z}

B_

Unknown macro: {x}
  • A_

B_

)\hat

Unknown macro: {j}

+(A_

Unknown macro: {x}

B_

Unknown macro: {y}

-A_

B_

)\hat

Unknown macro: {k}

]\end

Shortcut Using Matrix Determinant

One way to remember the formula derived in the section above is to use a matrix determinant:

  • No labels