You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 12 Next »

Also known as the vector product, the cross product is a way of multiplying two vectors to yield another vector.

Page Contents


Use in Physics

In mechanics, the cross product is used in calculating [torque] and [angular momentum]. The cross product is also used in introductory electricity and magnetism. Calculations involving the production and effects of magnetic fields generally involve the cross product.


Calculating Cross Products

Unit Vector Cross Products

By definition:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[\hat

Unknown macro: {x}

\times \hat

Unknown macro: {y}

= \hat

Unknown macro: {z}

]\end

and the same holds for even permutations of the order of the unit vectors, thus:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {y}

\times \hat

Unknown macro: {z}

= \hat

Unknown macro: {x}

]
[ \hat

\times \hat

Unknown macro: {x}

= \hat

]\end

Odd permutations reverse the sign:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {y}

\times\hat

Unknown macro: {x}

= -\hat

Unknown macro: {z}

]
[\hat

\times\hat

= -\hat

Unknown macro: {x}

]
[\hat

\times\hat

Unknown macro: {z}

= -\hat

Unknown macro: {y}

]\end

For three dimensions, the sign of the cross product of two unit vectors can be easily remembered by checking if the unit vectors are in a special version of alphabetical order. Start with the position of the

Unknown macro: {latex}

\begin

Unknown macro: {large}

$\hat

Unknown macro: {x}

$\end

vector and read to the right. When you get to the end of the equation, wrap to the beginning and keep reading until you return to

Unknown macro: {latex}

\begin

Unknown macro: {large}

$\hat

Unknown macro: {x}

$\end

. If you get x, y, z, then the sign of on the right hand side is positive. If you get x, z, y then the sign is negative.

and the cross product of any vector with itself is zero:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \hat

Unknown macro: {x}

\times\hat

= 0]
[\hat

Unknown macro: {y}

\times\hat

= 0]
[\hat

Unknown macro: {z}

\times\hat

= 0]\end

Note that reversing the order of the two vectors being multiplied switches the sign of the result.

Using this definition, it is possible to find the componentwise cross product of two vectors:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[\vec

Unknown macro: {A}

\times\vec

Unknown macro: {B}

=(A_

Unknown macro: {x}

\hat

+A_

Unknown macro: {y}

\hat

+A_

Unknown macro: {z}

\hat

)\times(B_

Unknown macro: {x}

\hat

+B_

Unknown macro: {y}

\hat

+B_

Unknown macro: {z}

\hat

) = A_

Unknown macro: {x}

B_

\hat

Unknown macro: {x}

\times\hat

+ A_

Unknown macro: {x}

B_

Unknown macro: {y}

\hat

\times\hat

Unknown macro: {y}

+ A_

Unknown macro: {x}

B_

Unknown macro: {z}

\hat

\times\hat

Unknown macro: {z}

+ A_

B_

Unknown macro: {x}

\hat

Unknown macro: {y}

\times\hat

+A_

Unknown macro: {y}

B_

\hat

Unknown macro: {y}

\times\hat

+A_

Unknown macro: {y}

B_

Unknown macro: {z}

\hat

\times\hat

Unknown macro: {z}

+A_

B_

Unknown macro: {x}

\hat

Unknown macro: {z}

\times\hat

+A_

Unknown macro: {z}

B_

Unknown macro: {y}

\hat

\times\hat

Unknown macro: {y}

+ A_

Unknown macro: {z}

B_

\hat

Unknown macro: {z}

\times\hat

]\end

Using the relationships given above for the cross product of unit vectors, we have:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ A_

Unknown macro: {x}

B_

Unknown macro: {y}

\hat

Unknown macro: {z}

- A_

B_

Unknown macro: {z}

\hat

Unknown macro: {y}

-A_

B_

Unknown macro: {x}

\hat

+A_

Unknown macro: {y}

B_

Unknown macro: {z}

\hat

Unknown macro: {x}

+ A_

B_

Unknown macro: {x}

\hat

-A_

Unknown macro: {z}

B_

Unknown macro: {y}

\hat

Unknown macro: {x}

= (A_

B_

-A_

Unknown macro: {z}

B_

Unknown macro: {y}

)\hat

Unknown macro: {x}

+ (A_

B_

Unknown macro: {x}
  • A_

B_

Unknown macro: {z}

)\hat

Unknown macro: {y}

+(A_

Unknown macro: {x}

B_

-A_

Unknown macro: {y}

B_

Unknown macro: {x}

)\hat

]\end

Shortcut Using Matrix Determinant

One way to remember the formula derived in the section above is to use a matrix determinant:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {A}

\times\vec

Unknown macro: {B}

= \begin

Unknown macro: {vmatrix}

\hat

Unknown macro: {x}

& \hat

Unknown macro: {y}

& \hat

Unknown macro: {z}


A_

& A_

Unknown macro: {y}

& A_

Unknown macro: {z}


B_

Unknown macro: {x}

& B_

& B_

Unknown macro: {z}

\end

= (A_

Unknown macro: {y}

B_

Unknown macro: {z}

-A_

B_

)\hat

Unknown macro: {x}

+ (A_

Unknown macro: {z}

B_

- A_

Unknown macro: {x}

B_

Unknown macro: {z}

)\hat

Unknown macro: {y}

+(A_

B_

Unknown macro: {y}

-A_

B_

Unknown macro: {x}

)\hat

Unknown macro: {z}

]\end

Magnitudes from Trigonometry

The formalism above has a simple geometric interpretation. The cross product measures the "perpendicularity" of two vectors. Since Cartesian unit vectors are always either perpendicular (

Unknown macro: {latex}

\begin

Unknown macro: {large}

$\hat

Unknown macro: {x}

\perp \hat

Unknown macro: {y}

, \hat

Unknown macro: {z}

$\end

) or parallel (

Unknown macro: {latex}

\begin

Unknown macro: {large}

$\hat

Unknown macro: {x}

\parallel \hat

$\end

) we get a cross product with either magnitude zero (for parallel unit vectors) or one (for perpendicular unit vectors). The mathematical definitions given above, however, will let you construct cross products with vectors that are combinations of the unit vectors, such as

Unknown macro: {latex}

\begin

Unknown macro: {large}

$\vec

Unknown macro: {A}

= \frac

Unknown macro: {1}

{\sqrt{2}}\hat

Unknown macro: {x}

+ \frac

{\sqrt{2}}\hat

Unknown macro: {y}

$\end

. Two arbitrary vectors will usually not be perfectly parallel or perpendicular. Instead, they will form some angle θ.

  • No labels