You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »

Here is a list of our publications.

2011

-Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions

   Hirokazu Miyake, Georgios A. Siviloglou, Graciana Puentes, David E. Pritchard, Wolfgang Ketterle, and David M. Weld, Phys. Rev. Lett. 107, 175302 (2011)

   arXiv:1108.5408v2 [cond-mat.quant-gas]

-Spin Gradient Demagnetization Cooling of Ultracold Atoms

   Patrick Medley, David M. Weld, Hirokazu Miyake, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 106, 195301 (2011)

2010

-Thermometry and refrigeration in a two-component Mott insulator of ultracold atoms

   David M. Weld, Hirokazu Miyake, Patrick Medley, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. A 82, 051603 (2010)

2009

-Spin Gradient Thermometry of Ultracold Atoms in Optical Lattices

   David M. Weld, Patrick Medley, Hirokazu Miyake, David Hucul, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 103, 245301 (2009)

   Physics Viewpoint article on our spin gradient thermometry paper

      The super cool atom thermometer, A. M. Rey, Physics 2, 103 (2009)

2007

-Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice

   Jongchul Mun, Patrick Medley, Gretchen K. Campbell, Luis G. Marcassa, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. Lett. 99, 150604 (2007)

-Atom trapping with a thin magnetic film

   Micah Boyd, Erik W. Streed, Patrick Medley, Gretchen K. Campbell, Jongchul Mun, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. A 76, 043624 (2007)

2006

-Imaging the Mott Insulator Shells By Using Atomic Clock Shifts

   Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Patrick Medley, Aaron E. Leanhardt, Luis G. Marcassa, David E. Pritchard, and Wolfgang Ketterle, Science 313, 649 (2006)

-Continuous and Pulsed Quantum Zeno Effect

   Erik W. Streed, Jongchul Mun, Micah Boyd, Gretchen K. Campbell, Patrick Medley, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006)

-Parametric Amplification of Scattered Atom Pairs

   Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 96, 020406 (2006)

-Large atom number Bose-Einstein Condensate machines

   Erik W. Streed, Ananth P. Chikkatur, Todd L. Gustavson, Micah Boyd, Yoshio Torii, Dominik Schneble, Gretchen K. Campbell, David E. Pritchard, and Wolfgang Ketterle, Rev. Sci. Instrum. 77, 023106 (2006)

2005

-Photon Recoil Momentum in Dispersive Media

   Gretchen K. Campbell, Aaron E. Leanhardt, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard, Phys. Rev. Lett. 94, 170403 (2005)

2004

-Raman amplification of matter waves

   Dominik Schneble, Gretchen K. Campbell, Erik W. Streed, Micah Boyd, David E. Pritchard, and Wolfgang Ketterle, Phys. Rev. A 69, 041601 (2004)

2003

-The Onset of Matter-Wave Amplification in a Superradiant Bose-Einstein Condensate

   Dominik Schneble, Yoshio Torii, Micah Boyd, Erik W. Streed, David E. Pritchard, and Wolfgang Ketterle, Science 300, 475 (2003)

Theses

Hirokazu Miyake, Probing and Preparing Novel State of Quantum Degenerate Rubidium Atoms in Optical Lattices(2013)

Patrick Medley, Thermometry and Cooling of Ultracold Atoms in an Optical Lattice 2MB (2010)

David Hucul, Magnetic Super-Exchange with Ultra Cold Atoms in Spin Dependent Optical Lattices 4MB (2009)

Jongchul Mun, Bose-Einstein Condensates in Optical Lattices: The Superfluid to Mott Insulator Phase Transition 7MB (2008)

Micah Boyd, Novel Trapping Techniques for Shaping Bose-Einstein Condensates 4MB (2006)

Gretchen Campbell, 87Rubidium Bose-Einstein Condensates in Optical Lattices 3MB (2006)

Erik Streed, 87Rubidium Bose-Einstein Condensates: Machine Construction and Quantum Zeno Experiments 4MB (2006)

Entropy distribution during spin gradient demagnetization cooling as in Phys. Rev. Lett. 106, 195301 (2011). Final temperatures are (a) T = 3.0 nK, (b) T = 1.5 nK, and (c) T = 0.5 nK. The technique pioneered in our lab was able to cool the atoms in our lattice to an astonishing 350 +/- 50 picokelvin!

Navigate space



  • No labels