You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 13 Next »

The Design Space

Our redesigned piston must have the same form factor as a McMaster piston to allow for easy descope. Given the team's Fall 2017 semester experience with tie-rod pistons, we elect to continue using this style.

Desired Performance

The piston must be able to supply enough force at its operating pressure to break the shear pins with a 2x safety factor, which is the safety-critical guideline for parachute components presented by NASA. [5] According to standards established by the Aerospace Corporation, there must also be a minimum 1.5 design burst factor. [4]

As of 12/27/2017, we plan on using 180lbs of shear pins, making for a desired yield force of 720lbs. This analysis makes use of thin-walled pressure vessel theory [2], paraphrased below:

Neglecting end effects, the limiting factor will be the hoop stress in the piston bore:

  \sigma_{hoop} = \frac{pR}{t}

Given Aluminum 6061-T6 as the material, which typically has a tensile yield strength of approximately 276 MPA (this analysis neglects the internal temperature of the piston due to the gas produced by the combustion of black powder. A transient thermal spike could degrade material properties when the piston is pressurizing, but we assume that the magnitude of energy released is negligible compared to the thermal mass of the aluminum).

Another requirement of the piston is that it cannot break the shear pins prematurely due to an internal build-up of pressure caused by the altitude difference. Between 4,245 ft (the altitude of Truth or Consequences, NM) and 152,945 ft ASL (a simulated upper bound on performance as of January 4, 2018), the pressure difference is approximately (given by the 1976 Standard Atmospheric Calculator using no temperature offset) -86600 Pa. Thus, the following graph of maximum piston area based on the amount of shear pins used can be estimated:

Resources:

The following resources are useful materials for learning about pressure vessel and piston theory:

[1] Jeff Hanson, Texas Tech: Intro to Thin Walled Pressure Vessels

[2] University of Colorado, Boulder: Thin-Walled Pressure Vessel Theory

[3] NASA Aerospace Pressure Vessel Safety Standard, 1974: NSS/HP-1740.1

Note that this standard was cancelled in July, 2002.


[4] Aerospace Corporation, Operational Guidelines for Spaceflight Pressure Vessels

[5] NASA, Structural Design Requirements and Factors of Safety for Spaceflight Hardware

  • No labels