You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 16 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}

[Model Hierarchy]

Unknown macro: {tr}
Unknown macro: {td}
The root page Model Hierarchy could not be found in space Modeling Applied to Problem Solving.
Unknown macro: {search-box}

Description and Assumptions

This model applies to a single point particle constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM.

Problem Cues

Any object that experiences a linear restoring force or torque so that the equation of motion takes the form

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a = \frac{d^

Unknown macro: {2}

x}{dt^{2}} = - \omega^

x ]\end

or

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \alpha = \frac{d^

Unknown macro: {2}

\theta}{dt^{2}} = -\omega^

\theta] \end

will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass m attached to a spring with force constant k, in which case, by [Hooke's Law]:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a = -\frac

Unknown macro: {kx}
Unknown macro: {m}

]\end

giving simple harmonic motion with angular frequency

Unknown macro: {latex}

$\sqrt{\dfrac

Unknown macro: {k}

{m}}$

.


Page Contents


Prerequisite Knowledge

Prior Models

Vocabulary and Procedures


System

Constituents

A single point particle (or, for the angular version of SHM, a single rigid body).

State Variables

Time (t), position (x) , velocity (v) and acceleration (a) or their angular equivalents.


Interactions

Relevant Types

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.

Interaction Variables

Force (F) or the angular equivalent.


Model

Relevant Definitions

Initial Conditions


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x_

Unknown macro: {0}

= x(t=0) = -\frac

Unknown macro: {a(t=0)}

{\omega^{2}}]
[ v_

= v(t=0)]\end

Amplitude of motion:


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ A = \sqrt{x_

Unknown macro: {0}

^

Unknown macro: {2}

+ \left(\frac{v_{0}}

Unknown macro: {omega}

\right)^{2}}]\end

Phase:


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \phi = \cos^{-1}\left(\frac{x_{0}}

Unknown macro: {A}

\right) = \sin^{-1}\left(\frac{v_{0}}

Unknown macro: {omega A}

\right)]\end

Laws of Change


Position:


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x(t) = x_

Unknown macro: {0}

\cos(\omega t) + \frac{v_{0}}

Unknown macro: {omega}

\sin(\omega t)]\end


or, equivalently

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x(t) = A\cos(\omega t + \phi) ]\end


Velocity:


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ v(t) = -\omega x_

Unknown macro: {0}

\sin(\omega t) + v_

\cos(\omega t)]\end


or, equivalently:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ v(t) = -A\omega\sin(\omega t + \phi)]\end


Acceleration:


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a(t) = -\omega^

Unknown macro: {2}

x_

Unknown macro: {0}

\cos(\omega t) - \omega v_

\sin(\omega t) = -\omega^

x(t) ]\end


or, equivalently:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a(t) = -\omega^

Unknown macro: {2}

A\cos(\omega t+\phi) = -\omega^

x(t)]\end


Diagrammatical Representations

  • Acceleration versus time graph.
  • Velocity versus time graph.
  • Position versus time graph.

Relevant Examples

None yet.


Unknown macro: {search-box}



null

RELATE wiki by David E. Pritchard is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

  • No labels