You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 8 Next »

The relationship between the kinetic energy of a point particle and the work done on the point particle. This theorem is one way to arrive at a mathematical definition of work.

Statement of the Theorem

If all the influences on a point particle are represented as works, the net work done by the forces produces a change in the kinetic energy of the particle according to:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \Delta K = W_

Unknown macro: {rm net}

]\end

Derivation of the Theorem

From Newton's 2nd Law for a point particle, we know

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {F}

_

Unknown macro: {rm net}

= m\frac{d\vec{v}}

Unknown macro: {dt}

]\end

Now suppose that the particle undergoes an infinitesimal displacement dr. Since we want to bring the left side of the equation into line with the form of the expression for work, we take the dot product of each side with the displacement:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {F}

_

Unknown macro: {rm net}

\cdot d\vec

Unknown macro: {r}

= m\frac{d\vec{v}}

Unknown macro: {dt}

\cdot d\vec

]\end

Before we can integrate, we make a substitution. Since v is the velocity of the particle, we can re-express the infinitesimal displacement as:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ d\vec

Unknown macro: {r}

= \vec

Unknown macro: {v}

dt]\end

Making this substitution on the right hand side of the equation, we have:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {F}

_

Unknown macro: {rm net}

\cdot d\vec

Unknown macro: {r}

= m\frac{d\vec{v}}

Unknown macro: {dt}

\cdot \vec

Unknown macro: {v}

\:dt = m\vec

\cdot d\vec

Unknown macro: {v}

= m(v_

Unknown macro: {x}

\;dv_

+ v_

Unknown macro: {y}

\;dv_

+v_

Unknown macro: {z}

\;dv_

)]\end

We can now integrate over the path:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \int_

Unknown macro: {rm path}

\vec

Unknown macro: {F}

_

Unknown macro: {rm net}

\cdot d\vec

Unknown macro: {r}

= \frac

Unknown macro: {1}
Unknown macro: {2}

m(v_

Unknown macro: {x,f}

^

-v_

Unknown macro: {x,i}

^

Unknown macro: {2}

+ v_

Unknown macro: {y,f}

^

- v_

Unknown macro: {y,i}

^

Unknown macro: {2}

+ v_

Unknown macro: {z,f}

^

- v_

Unknown macro: {z,i}

^

Unknown macro: {2}

) = \frac

Unknown macro: {2}

m(v_

Unknown macro: {f}

^

-v_

Unknown macro: {i}

^

Unknown macro: {2}

)]\end

which is equivalent to the Work-Kinetic Energy Theorem.

  • No labels