You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 8 Next »

The Design Space

Our redesigned piston must have the same form factor as a McMaster piston to allow for easy descope. Given the team's Fall 2017 semester experience with tie-rod pistons, we elect to continue using this style.

Desired Performance

The piston must be able to supply enough force at its operating pressure to break the shear pins with a 2x safety factor, which is the safety-critical guideline presented by NASA. [5] According to standards established by the Aerospace Corporation, there must be a minimum 1.5 design burst factor. [4]

As of 12/27/2017, we plan on using 180lbs of shear pins, making for a desired yield force of 720lbs. This analysis makes use of thin-walled pressure vessel theory [2], paraphrased below:

Neglecting end effects, the limiting factor will be the hoop stress in the piston bore:

  \sigma_{hoop} = \frac{pR}{t}

Given Aluminum 6061 as the material

Resources:

The following resources are useful materials for learning about pressure vessel and piston theory:

[1] Jeff Hanson, Texas Tech: Intro to Thin Walled Pressure Vessels

[2] University of Colorado, Boulder: Thin-Walled Pressure Vessel Theory

[3] NASA Aerospace Pressure Vessel Safety Standard, 1974: NSS/HP-1740.1

Note that this standard was cancelled in July, 2002.


[4] Aerospace Corporation, Operational Guidelines for Spaceflight Pressure Vessels

[5] NASA, Structural Design Requirements and Factors of Safety for Spaceflight Hardware

  • No labels