You are viewing an old version of this page. View the current version.
Compare with Current
View Page History
« Previous
Version 3
Next »
Statement of the Theorem
If all the influences on a point particle are represented as works, the net work done by the forces produces a change in the kinetic energy of the particle according to:
Unknown macro: {latex} \begin
Unknown macro: {large} [ \Delta K = W_
Unknown macro: {rm net}
]\end
Derivation of the Theorem
From Newton's 2nd Law for a point particle, we know
Unknown macro: {latex} \begin
Unknown macro: {large} [ \vec
Unknown macro: {F}
_
Unknown macro: {rm net}
= m\frac{d\vec{v}}
Unknown macro: {dt}
]\end
Now suppose that the particle undergoes an infinitesimal displacement dr. Since we want to bring the left side of the equation into line with the form of the expression for work, we take the dot product of each side with the displacement:
Unknown macro: {latex} \begin
Unknown macro: {large} [ \vec
Unknown macro: {F}
_
Unknown macro: {rm net}
\cdot d\vec
Unknown macro: {r} = m\frac{d\vec{v}}
Unknown macro: {dt}
\cdot d\vec
]\end
Before we can integrate, we make a substitution. Since v is the velocity of the particle, we can re-express the infinitesimal displacement as:
Unknown macro: {latex} \begin
Unknown macro: {large} [ d\vec
Unknown macro: {r}
= \vec
Unknown macro: {v}
dt]\end
Making this substitution on the right hand side of the equation, we have:
Unknown macro: {latex} \begin
Unknown macro: {large} [ \vec
Unknown macro: {F}
_
Unknown macro: {rm net}
\cdot d\vec
Unknown macro: {r}
= m\frac{d\vec{v}}
Unknown macro: {dt}
\cdot \vec
Unknown macro: {v} \:dt = m\vec
\cdot d\vec
Unknown macro: {v}
= m(v_
+ v_
+v_
)]\end
We can now integrate over the path:
Unknown macro: {latex} \begin
Unknown macro: {large} [ \int_
Unknown macro: {rm path}
\vec
Unknown macro: {F}
_
Unknown macro: {rm net}
\cdot d\vec
Unknown macro: {r}
= \frac
Unknown macro: {1} Unknown macro: {2} m(v_
Unknown macro: {x,f}
^
-v_
Unknown macro: {x,i}
^
Unknown macro: {2} + v_
Unknown macro: {y,f}
^
- v_
Unknown macro: {y,i}
^
Unknown macro: {2} + v_
Unknown macro: {z,f}
^
- v_
Unknown macro: {z,i}
^
Unknown macro: {2}
) = \frac
Unknown macro: {2} m(v_
Unknown macro: {f}
^
-v_
Unknown macro: {i}
^
Unknown macro: {2}
)]\end
which is equivalent to the Work-Kinetic Energy Theorem.