You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 20 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}

Kinetic Energy

The fundamental manifestation of mechanical energy, kinetic energy is the energy associated with an object's translational and/or rotational motion. Kinetic energy provides the definition of work (and hence all other forms of mechanical energy) through the Work-Kinetic Energy Theorem.

Mathematical Definition

Translational Kinetic Energy of a Point Particle

The kinetic energy of a point particle is given by:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ K = \frac

Unknown macro: {1}
Unknown macro: {2}

mv^

]\end

Translational Kinetic Energy of a System

Since energy is a scalar, the kinetic energy of a system of point particles is the sum of the kinetic energies of the constituents:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ K^

Unknown macro: {rm sys}

= \sum_

Unknown macro: {j = 1}

^

Unknown macro: {N}

\frac

Unknown macro: {1}
Unknown macro: {2}

m_

Unknown macro: {j}

v_

^

]\end

where N is the number of system constituents.

Kinetic Energy of a Rigid Body

Consider a rigid body that can rotate and translate. We begin by treating the rigid body as a collection of point masses that are translating with the center of mass of the body and also rotating about it with angular velocity ω. We therefore write the velocity of each point as a sum of rotational and translational parts:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {v}

_

Unknown macro: {j}

= \vec

_

Unknown macro: {rm cm}

+ \vec

Unknown macro: {omega}

\times \vec

Unknown macro: {r}

_

Unknown macro: {j}

]\end

where rj is the position of the jth particle measured from the body's axis of rotation passing through the center of mass.

With this split, the kinetic energy of the body becomes:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ K = \sum_

Unknown macro: {j}

\frac

Unknown macro: {1}
Unknown macro: {2}

m_

(v_

Unknown macro: {rm cm}

^

Unknown macro: {2}

+ \vec

Unknown macro: {v}

_

\cdot(\vec

Unknown macro: {omega}

\times \vec

Unknown macro: {r}

_

Unknown macro: {j}

) + \omega^

Unknown macro: {2}

r_

^

Unknown macro: {2}

)]\end

The center term will equal zero, because ω and vcm are constants, so:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \sum_

Unknown macro: {j}

\frac

Unknown macro: {1}
Unknown macro: {2}

m_

\vec

Unknown macro: {v}

_

Unknown macro: {rm cm}

\cdot(\vec

Unknown macro: {omega}

\times \vec

Unknown macro: {r}

_

Unknown macro: {j}

) =
\frac

Unknown macro: {1}
Unknown macro: {2}

\vec

_

Unknown macro: {rm cm}

\cdot\left(\vec

Unknown macro: {omega}

\times \sum_

Unknown macro: {j}

m_

\vec

Unknown macro: {r}

_

Unknown macro: {j}

\right)]\end

and the sum over mjrj is constrained to equal zero because we have assumed the center of mass is at the position r = 0 in our coordinates. With this realization, and using the definition of the moment of inertia, we have:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ K = \frac

Unknown macro: {1}
Unknown macro: {2}

m_

Unknown macro: {rm tot}

v_

Unknown macro: {rm cm}

^

+ \frac

Unknown macro: {2}

I_

Unknown macro: {rm cm}

\omega^

]\end

This result shows that the kinetic energy of a rigid body can be broken into two parts, generally known as the translational part and the rotational part.

Rotational Kinetic Energy

The above formula suggests a definition for the kinetic energy of a rotating body:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ K^

Unknown macro: {rm rot}

= \frac

Unknown macro: {1}
Unknown macro: {2}

I\omega^

]\end

Error formatting macro: live-template: java.lang.NullPointerException
  • No labels