{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=40%}
{tr}
{td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]*
{td}
{tr}
{tr}
{td}
{pagetree:root=Model Hierarchy|reverse=true}
{search-box}
{td}
{tr}
{table}
h2. Description and Assumptions
{excerpt}This model applies to a [rigid body] which is executing [pure rotation] confined to the _xy_ plane about the origin.{excerpt}
h2. Problem Cues
Problems in rotational motion often feature an object which is constrained to rotate about some axle or pivot point. Additionally, the motion of any rigid body which can be treated using the [1-D Angular Momentum and Torque] model can be described as translation of the center of mass plus pure rotation about the center of mass.
----
|| Page Contents ||
| {toc:style=none|indent=10px|maxLevel=4} |
----
h2. Prerequisite Knowledge
h4. Prior Models
* [Uniform Circular Motion]
* [One-Dimensional Motion with Constant Acceleration|1-D Motion (Constant Acceleration)]
h4. Vocabulary and Procedures
* [centripetal acceleration]
* [tangential acceleration]
* [angular position]
* [angular frequency]
* [angular acceleration]
----
h2. System
A single [rigid body].
----
h2. Interactions
h4. Relevant Types
The system will be subject to a position-dependent centripetal acceleration, and may also be subject to an angular (or equivalently, tangential) acceleration.
h4. Interaction Variables
Angular acceleration (α), tangential acceleration (_a_~tan~) and radial (or centripetal) acceleration (_a_~c~).
----
h2. Model
h4. Relevant Definitions
{section}{column}
h5. Relationships between angularAngular and tangentialTangential quantities:Quantities
\\
{latex}\begin{large}\[ \vec{v}_{\rm tan} = \vec{\omega} \times \vec{r} = \omega r \;\hat{\theta}\]
\[ \vec{a}_{\rm tan} = \vec{\alpha}\times \vec{r} = \alpha r \;\hat{\theta}\]\end{large}{latex}
\\
{column}{column}
h5. Centripetal acceleration:Acceleration
\\
{latex}\begin{large}\[ \vec{a}_{c} = -\frac{v_{\rm tan}^{2}}{r}\hat{r} = -\omega^{2}r\;\hat{r}\]\end{large}{latex}
\\
{column}{column}
h5. Magnitude of total acceleration:Total Acceleration
\\
{latex}\begin{large}\[ a = \sqrt{a_{tan}^{2}+a_{c}^{2}} = r\sqrt{\alpha^{2}+\omega^{4}} \]\end{large}{latex}
\\
{column}{section}
{note}By definition, _every point_ in an object undergoing [pure rotation] will have the same value for all _angular_ quantities (θ, ω, α). The linear quantities (_r_, _v_, _a_), however, will vary with position in the object.{note}
h4. Laws of Change
{section}{column}
h5. Differential form:Form
\\
{latex}\begin{large}\[ \frac{d\omega}{dt} = \alpha \]
\[\frac{d\theta}{dt} = \omega\]
\end{large}{latex}
\\
{column}{column}
h5. Integral form:Form
\\
{latex}\begin{large}\[ \omega_{f} = \omega_{i} +\int_{t_{i}}^{t_{f}} \alpha \;dt\]
\[ \theta_{f} = \theta_{i} +\int_{t_{i}}^{t_{f}} \omega\;dt\]\end{large}{latex}
{column}{section}
{note}Note the analogy between these Laws of Change and those of the [One-Dimensional Motion (General)] model. Thus, for the case of *constant angular acceleration*, the integral form of these Laws are equivalent to:
\\
{latex}\begin{large}\[ \omega_{f} = \omega_{i} + \alpha(t_{f}-t_{i})\]
\[ \theta_{f} = \theta_{i} + \frac{1}{2}(\omega_{i}+\omega_{f})(t_{f}-t_{i})\]
\[ \theta_{f} = \theta_{i} + \omega_{i}(t_{f}-t_{i}) +\frac{1}{2}\alpha(t_{f}-t_{i})^{2}\]
\[ \omega_{f}^{2} =\omega_{i}^{2} + 2\alpha(\theta_{f}-\theta_{i})\]\end{large}{latex} {note}
----
h2. Diagrammatical Representations
* Angular position versus time graph.
* Angular velocity versus time graph.
----
h2. Relevant Examples
{contentbylabel:constant_angular_acceleration|maxResults=50|showSpace=false|excerpt=true}
----
{search-box}
\\
\\
| !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. | |