{composition-setup}{composition-setup}
{table:rules=cols|cellpadding=8|cellspacing=0|border=1|frame=void}
{tr:valign=top}{td:width=355px|bgcolor=#F2F2F2}
{live-template:Left Column}
{td}
{td}
h1. Description and Assumptions
{excerpt:hidden=true}*System:* Any. --- *Interactions:* Any. --- *Note:* Linear momentum evolves separately from angular momentum, so all system constituents are treated as [point particles] in this model.{excerpt}
This model is [generally applicable|generally applicable model] (assuming knowledge of the external forces and system constituents).
h1. Problem Cues
This model is especially useful when describing the momentum of systems where external forces are absent (system momentum will be constant) or estimating the force in a process that occurs in a very short time interval as in collisions (impulse will be easier to determine than force).
|| Page Contents ||
| {toc:style=none|indent=10px|maxLevel=3} |
h1. Prerequisite Knowledge
h3h4. {toggle-cloak:id=prior} Prior Models
{cloak:id=prior}
* [Point Particle Dynamics]
{cloak}
h3h4. {toggle-cloak:id=vocab} Vocabulary
{cloak:id=vocab}
* [system]
* [force]
* [impulse]
* [momentum]
* [velocity]
{cloak}
h1. Compatible Systems
The system must be effectively composed of [point particles|point particle], though rigid bodies may be treated as point particles with positions specified by the center of mass positions of the rigid body when this model is used.
h1. Relevant Interactions
Only [external forces|external force] need be considered, since [internal forces|internal force] do not change the system's momentum.
h1. Model
h3. Relevant Definitions
\\
{latex}\begin{large}\[ \vec{p} = m\vec{v}\]\end{large}{latex}
h3. Laws of Change
{section}
{column}
h6. Differential Form
{latex}\begin{large}\[ \sum_{\rm system}\frac{d\vec{p}}{dt} = \sum_{\rm external} \vec{F}\]\end{large}{latex}
{column}
{column}
h6. Integral Form
{latex}\begin{large}\[ \sum_{\rm system}\vec{p}_{f} = \sum_{\rm system}\vec{p}_{i} + \sum_{\rm external} \vec{J} = \sum_{\rm system}\vec{p}_{i} + \int \sum_{\rm external} \vec{F}\:dt \]
\end{large}{latex}
{column}
{section}
h1. Diagrammatic Representations
{contentbylabel:representation,momentum|showSpace=false|showLabels=false|excerpt=true|operator=AND|maxResults=50}
h1. Relevant Examples
h4. {toggle-cloak:id=const} Examples Involving Constant Momentum
{cloak:id=const}{contentbylabel:constant_momentum|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=imp} Examples Involving Impulse
{cloak:id=imp}{contentbylabel:impulse|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=oned} Examples Involving 1-D Collisions
{cloak:id=oned}{contentbylabel:1d_collision|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=twod} Examples Involving 2-D Collisions
{cloak:id=twod}{contentbylabel:2d_collision|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=elas} Examples Involving Elastic Collisions
{cloak:id=elas}{contentbylabel:elastic_collision|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=inel} Examples Involving Totally Inelastic Collisions
{cloak:id=inel}{contentbylabel:totally_inelastic|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=flux} Examples Involving Continuous Momentum Flux
{cloak:id=flux}{contentbylabel:momentum_force|showSpace=false|showLabels=true|excerpt=true|maxResults=50}{cloak}
h4. {toggle-cloak:id=all} All Examples Using this Model
{cloak:id=all}{contentbylabel:constant_momentum,momentum_force,impulse|showSpace=false|showLabels=true|excerpt=true|operator=OR|maxResults=50}{cloak}
----
{search-box}
\\
{td}
{tr}
{table}
{live-template:RELATE license}
\\ |