You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 25 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}

Rotational Motion

DescriptionandAssumptions"> Description and Assumptions

ProblemCues"> Problem Cues

PriorModels"> Prior Models

Vocabulary"> Vocabulary

Model

Compatible System "> Compatible System

Interactions "> Interactions

Relevant Definitions "> Relevant Definitions

Differential Form


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \frac

Unknown macro: {domega}
Unknown macro: {dt}

= \alpha ]
[\frac

Unknown macro: {dtheta}

= \omega]
\end


______

Integral Form


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \omega_

Unknown macro: {f}

= \omega_

Unknown macro: {i}

+\int_{t_{i}}^{t_{f}} \alpha \;dt]
[ \theta_

= \theta_

Unknown macro: {i}

+\int_{t_{i}}^{t_{f}} \omega\;dt]\end

Note the analogy between these Laws of Change and those of the

One-Dimensional Motion (General) model. Thus, for the case of constant angular acceleration, the integral form of these Laws are equivalent to:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \omega_

Unknown macro: {f}

= \omega_

Unknown macro: {i}

+ \alpha(t_

-t_

Unknown macro: {i}

)]
[ \theta_

Unknown macro: {f}

= \theta_

+ \frac

Unknown macro: {1}
Unknown macro: {2}

(\omega_

Unknown macro: {i}

+\omega_

Unknown macro: {f}

)(t_

-t_

)]
[ \theta_

Unknown macro: {f}

= \theta_

Unknown macro: {i}

+ \omega_

(t_

-t_

Unknown macro: {i}

) +\frac

Unknown macro: {2}

\alpha(t_

Unknown macro: {f}

-t_

Unknown macro: {i}

)^

]
[ \omega_

Unknown macro: {f}

^

Unknown macro: {2}

=\omega_

Unknown macro: {i}

^

+ 2\alpha(\theta_

-\theta_

Unknown macro: {i}

)]\end

">
Error formatting macro: live-template: java.lang.NullPointerException
  • No labels