You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 18 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}

[Model Hierarchy]

Unknown macro: {tr}
Unknown macro: {td}
The root page Model Hierarchy could not be found in space Modeling Applied to Problem Solving.
Unknown macro: {search-box}

Description and Assumptions

This model applies to a single point particle constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM.

Problem Cues

Any object that experiences a linear restoring force or torque so that the equation of motion takes the form

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a = \frac{d^

Unknown macro: {2}

x}{dt^{2}} = - \omega^

x ]\end

or

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \alpha = \frac{d^

Unknown macro: {2}

\theta}{dt^{2}} = -\omega^

\theta] \end

will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass m attached to a spring with force constant k, in which case, by [Hooke's Law]:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a = -\frac

Unknown macro: {kx}
Unknown macro: {m}

]\end

giving simple harmonic motion with angular frequency

Unknown macro: {latex}

$\sqrt{\dfrac

Unknown macro: {k}

{m}}$

.


Page Contents


Prerequisite Knowledge

Prior Models

Vocabulary and Procedures


System

A single point particle (or, for the angular version of SHM, a single rigid body).


Interactions

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.


Model

Relevant Definitions

Initial Conditions
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x_

Unknown macro: {0}

= x(t=0) = -\frac

Unknown macro: {a(t=0)}

{\omega^{2}}]
[ v_

= v(t=0)]\end

Amplitude of Motion
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ A = \sqrt{x_

Unknown macro: {0}

^

Unknown macro: {2}

+ \left(\frac{v_{0}}

Unknown macro: {omega}

\right)^{2}}]\end

Phase


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \phi = \cos^{-1}\left(\frac{x_{0}}

Unknown macro: {A}

\right) = \sin^{-1}\left(\frac{v_{0}}

Unknown macro: {omega A}

\right)]\end

Laws of Change

Position:
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x(t) = x_

Unknown macro: {0}

\cos(\omega t) + \frac{v_{0}}

Unknown macro: {omega}

\sin(\omega t)]\end


or, equivalently

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ x(t) = A\cos(\omega t + \phi) ]\end

Velocity
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ v(t) = -\omega x_

Unknown macro: {0}

\sin(\omega t) + v_

\cos(\omega t)]\end


or, equivalently:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ v(t) = -A\omega\sin(\omega t + \phi)]\end

Acceleration
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a(t) = -\omega^

Unknown macro: {2}

x_

Unknown macro: {0}

\cos(\omega t) - \omega v_

\sin(\omega t) = -\omega^

x(t) ]\end


or, equivalently:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a(t) = -\omega^

Unknown macro: {2}

A\cos(\omega t+\phi) = -\omega^

x(t)]\end


Diagrammatical Representations

  • Acceleration versus time graph.
  • Velocity versus time graph.
  • Position versus time graph.

Relevant Examples

None yet.


Unknown macro: {search-box}



null

RELATE wiki by David E. Pritchard is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

  • No labels