You are viewing an old version of this page. View the current version.
Compare with Current
View Page History
« Previous
Version 22
Next »
Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}
Simple Harmonic Motion
This model applies to a single point particle constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM.
Any object that experiences a linear restoring force or torque so that the equation of motion takes the form
Unknown macro: {latex} \begin
Unknown macro: {large} [ a = \frac{d^
Unknown macro: {2} x}{dt^{2}} = - \omega^
x ]\end
or
Unknown macro: {latex} \begin
Unknown macro: {large} [ \alpha = \frac{d^
Unknown macro: {2} \theta}{dt^{2}} = -\omega^
\theta] \end
will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass m attached to a spring with force constant k, in which case, by [Hooke's Law]:
Unknown macro: {latex} \begin
Unknown macro: {large} [ a = -\frac
Unknown macro: {kx}
Unknown macro: {m}
]\end
giving simple harmonic motion with angular frequency
Unknown macro: {latex} $\sqrt{\dfrac
Unknown macro: {k}
{m}}$
.
Models
A single point particle (or, for the angular version of SHM, a single rigid body).
The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.
Initial Conditions
Unknown macro: {latex} \begin
Unknown macro: {large} [ x_
Unknown macro: {0} = x(t=0) = -\frac
Unknown macro: {a(t=0)}
{\omega^{2}}\qquad]
[ v_
= v(t=0)]\end
Amplitude of Motion
Unknown macro: {latex} \begin
Unknown macro: {large} [ A = \sqrt{x_
Unknown macro: {0}
^
Unknown macro: {2}
+ \left(\frac{v_{0}}
Unknown macro: {omega}
\right)^{2}}\qquad]\end
Phase
Unknown macro: {latex} \begin
Unknown macro: {large} [ \phi = \cos^{-1}\left(\frac{x_{0}}
Unknown macro: {A}
\right) = \sin^{-1}\left(\frac{v_{0}}
Unknown macro: {omega A}
\right)\qquad]\end
Position:
Unknown macro: {latex} \begin
Unknown macro: {large} [ x(t) = x_
Unknown macro: {0}
\cos(\omega t) + \frac{v_{0}}
Unknown macro: {omega}
\sin(\omega t)\qquad]\end
or, equivalently
Unknown macro: {latex} \begin
Unknown macro: {large} [ x(t) = A\cos(\omega t + \phi)]\end
Velocity
Unknown macro: {latex} \begin
Unknown macro: {large} [ v(t) = -\omega x_
Unknown macro: {0} \sin(\omega t) + v_
\cos(\omega t)\qquad]\end
or, equivalently:
Unknown macro: {latex} \begin
Unknown macro: {large} [ v(t) = -A\omega\sin(\omega t + \phi)]\end
Acceleration
Unknown macro: {latex} \begin
Unknown macro: {large} [ a(t) = -\omega^
Unknown macro: {2} x_
Unknown macro: {0} \cos(\omega t) - \omega v_
\sin(\omega t) = -\omega^
x(t) \qquad]\end
or, equivalently:
Unknown macro: {latex} \begin
Unknown macro: {large} [ a(t) = -\omega^
Unknown macro: {2} A\cos(\omega t+\phi) = -\omega^
x(t)]\end
- Acceleration versus time graph.
- Velocity versus time graph.
- Position versus time graph.
Relevant Examples
None yet.
Unknown macro: {search-box}
Error formatting macro: live-template: java.lang.NullPointerException