HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    
HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    

Adherent transfection - seed at 10^5 per well

 Single color controltag- vs. e-BFPSingle color controlis our hEF1a:Gal4 working?Single color control
HEK293

hEF1a:tagBFP 100ng

dummy 400ng

hEF1a:eBFP 100ng

dummy 400ng

hEF1a:eYFP 100ng

dummy 400ng

UAS:eYFP 100ng

hEF1a:Gal4VP16 100ng

hEF1a:tagBFP 100ng

dummy 200ng

hEF1a:mKate 100ng

dummy 400ng

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

 

    

 

 

CloningTransfectionDoxCytometryData Analysis

 

07/0607/0707/0807/09
 

08/11

w/ Samira

   

Because transfecting a large number of plasmids (~8) into HEK293 cells can drastically increase cytotoxicity and lower transfection efficiency, we are optimizing our transfections before we start characterizing the B-Cell Receptor. We plan on evaluating suspended vs. adherent transfection and varying total mass of DNA transfected.

We will be testing in duplicate 10, 25, 50,100, 250, 500, and 1000ng of DNA with lipo 3K suspended vs non suspended transfection to determine optimal transfection conditions for our cells.

Results:

 

Adherent Transfection

 Untransfected10ng25ng50ng100ng250ng500ng1000ng
 HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

Red

vs.

Blue

Yellow

vs.

Blue

Co-Transfection

Efficiency

0%0%0.053%0.12%0.74%4.33%5.37%3.15%

Red

vs.

Blue

        

Yellow

vs.

Blue

        

Co-Transfection

Efficiency

0%0%0.047%0.29%1.23%5.87%5.62%2.91%

Co-Transfection

Efficiency Average

0%0%0.05%0.205%0.985%5.1%5.945%3.03%

 

Suspended Transfection

 Untransfected10ng25ng50ng100ng250ng500ng1000ng
 HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

Co-Transfection

Efficiency 1

0%0%0.063%0.19%1.07%4.61%3.95%2.3%

Co-Transfection

Efficiency 2

0%0%0.066%0.32%0.94%4.3%4.77%2.23%

Co-Transfection

Efficiency Average

0%0%0.0645%0.255%1.005%4.455%4.36%2.265%
x-axis labelng
10
210
325
450
5100
6250
7500
81000

*performed a T-test on data (albeit sketchy T-test, given that there were only 2 duplicates of each condition) --> suspended vs. adherent show no significant difference in co transfection efficiency

Discussion:

Bleed-through: 

We should run single color controls to account for bleed-through. The gating that gave the above data excluded a population when gating in the yellow vs blue space on account of bleed through. However, we can't know for sure that that population is just bleed through without single color controls. 

Non-linear plot:

y is just y=t
x=0.1t+2

So early on the +2 dominates, but at the higher domain the 0.1t dominates.  That is why the plot looks like it does.  All a*x vs b*y linear functions are straight diagonal lines.  ax+c looks like ax for ax>>c, and like c for ax<<c.  and a constant makes a vertical lines on log log axis.  That is why it starts pointing up then tilts over and makes a straight diagonal.
  • No labels