{composition-setup}{composition-setup}
{table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols}
{tr:valign=top}
{td}
{excerpt:hidden=true}*System:* One [rigid body] in [pure rotation] or one [point particle] constrained to move in a circle. --- *Interactions:* Any [angular acceleration]. --- *Warning:* The constraint of rotational motion implies [centripetal acceleration] may have to be considered.{excerpt}
h4. Introduction to the Model
h5. Description and Assumptions
This model applies to a [rigid body] which is executing [pure rotation] confined to the _xy_ plane about the origin.
h5. Learning Objectives
Students will be assumed to understand this model who can:
* Describe what it means for a system to execute pure rotation.
* Convert from tangential (linear) quantities to the corresponding angular quantities using the radius of the motion.
* Explain the dependence of angular quantities and of tangential quantities describing the motion of a point on the radius of the point from the [axis of rotation].
* Define tangential and centripetal acceleration for an object in rotational motion.
* Relate centripetal acceleration to angular velocity.
* Give an expression for the total [acceleration] of any point in a [rigid body] executing rotational motion in terms of the [angular acceleration] of the body, the [angular velocity] of the body and the radius of the point from the [axis of rotation].
* Summarize the analogies between angular motion with constant angular acceleration and linear motion with constant (linear) acceleration.
h5. Relevant Definitions
{section}{column}
{panel:title=Relationship between Angular and Tangential Quantities|bgColor=#FFFFFF}
{center}{latex}\begin{large}\[ \vec{v}_{\rm tan} = \vec{\omega} \times \vec{r} = \omega r \;\hat{\theta}\]
\[ \vec{a}_{\rm tan} = \vec{\alpha}\times \vec{r} = \alpha r \;\hat{\theta}\]\end{large}{latex}{center}{panel}
{column}{column}
{panel:title=Centripetal Acceleration|bgColor=#FFFFFF}
{center}{latex}\begin{large}\[ \vec{a}_{c} = -\frac{v_{\rm tan}^{2}}{r}\hat{r} = -\omega^{2}r\;\hat{r}\]\end{large}{latex}{center}{panel}
{column}{column}
{panel:title=Magnitude of Total Acceleration|bgColor=#FFFFFF}
{center}{latex}\begin{large}\[ a = \sqrt{a_{tan}^{2}+a_{c}^{2}} = r\sqrt{\alpha^{2}+\omega^{4}} \]\end{large}{latex}{center}
{panel}
{column}{section}
{note}By definition, _every point_ in an object undergoing [pure rotation] will have the same value for all _angular_ quantities (θ, ω, α). The linear quantities (_r_, _v_, _a_), however, will vary with position in the object.{note}
h4. S.I.M. Structure of the Model
h5. Compatible Systems
This model applied to a single [rigid body] or to a single [point particle] constrained to move in a circular path.
h5. Relevant Interactions
The system will be subject to a position-dependent [centripetal acceleration], and may also be subject to an angular (or equivalently, [tangential|tangential acceleration]) acceleration.
h4. Laws of Change
h5. Mathematical Representation
{section}{column}
{panel:title=Differential Form|bgColor=#FFFFFF}
{center}{latex}\begin{large}\[ \frac{d\omega}{dt} = \alpha \]
\[\frac{d\theta}{dt} = \omega\]
\end{large}{latex}{center}
{panel}
{column}{column}
{panel:title=Integral Form|bgColor=#FFFFFF}
{center}{latex}\begin{large}\[ \omega_{f} = \omega_{i} +\int_{t_{i}}^{t_{f}} \alpha \;dt\]
\[ \theta_{f} = \theta_{i} +\int_{t_{i}}^{t_{f}} \omega\;dt\]\end{large}{latex}{center}
{panel}
{column}{section}
{note}Note the analogy between these Laws of Change and those of the [One-Dimensional Motion (General)] model. Thus, for the case of *constant angular acceleration*, the integral form of these Laws are equivalent to:
\\
{center}{latex}\begin{large}\[ \omega_{f} = \omega_{i} + \alpha(t_{f}-t_{i})\]
\[ \theta_{f} = \theta_{i} + \frac{1}{2}(\omega_{i}+\omega_{f})(t_{f}-t_{i})\]
\[ \theta_{f} = \theta_{i} + \omega_{i}(t_{f}-t_{i}) +\frac{1}{2}\alpha(t_{f}-t_{i})^{2}\]
\[ \omega_{f}^{2} =\omega_{i}^{2} + 2\alpha(\theta_{f}-\theta_{i})\]\end{large}{latex}{center} {note}
h5. Diagrammatic Representations
* Angular position versus time graph.
* Angular velocity versus time graph.
h4. Relevant Examples
h6. {toggle-cloak:id=all} All Examples Using the Model
{cloak:id=all}
{contentbylabel:constant_angular_acceleration|maxResults=50|showSpace=false|excerpt=true}
{cloak}
\\
\\
{search-box}
\\
\\
{td}
{tr}
{table}
|