You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 61 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}

Simple Harmonic Motion

Description and Assumptions

This model applies to a single point particle constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM, or referred to as "Simple Harmonic Oscillation" (SHO).

Problem Cues

Any object that experiences a linear restoring force or torque so that the equation of motion takes the form

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ a = \frac{d^

Unknown macro: {2}

x}{dt^{2}} = - \omega_

Unknown macro: {0}

^

x ]\end

or

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \alpha = \frac{d^

Unknown macro: {2}

\theta}{dt^{2}} = -\omega_

Unknown macro: {0}

^

\theta] \end

will experience simple harmonic motion with natural angular frequency ω0. The most common systems whose equations of motion take this form are a mass on a spring or a pendulum (in the small-angle approximation). Any problem requesting or giving a time for one of these systems will likely require the use of the Simple Harmonic Motion model.

Another cue that Simple Harmonic Motion is occurring is if the position, the velocity, or the acceleration are sinusoidal in time.

Learning Objectives

Students will be assumed to understand this model who can:

Models

Compatible Systems

A single point particle (or, for the angular version of SHM, a single rigid body).

Relevant Interactions

The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position.

Relevant Definitions

Amplitude
Unknown macro: {center}
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ A = \sqrt{x_

Unknown macro: {i}

^

Unknown macro: {2}

+ \left(\frac{v_{i}}{\omega_{0}}\right)^{2}} ]\end

Phase
Unknown macro: {center}
Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \phi = \cos^{-1}\left(\frac{x_{i}}

Unknown macro: {A}

\right) = \sin^{-1}\left(\frac{v_{i}}{\omega_

Unknown macro: {0}

A}\right)]\end

Laws of Change

    Unknown macro: {center}

    Position


    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ x(t) = x_

    Unknown macro: {i}

    \cos(\omega_

    Unknown macro: {0}

    (t-t_

    )) + \frac{v_{i}}{\omega_{0}}\sin(\omega_

    Unknown macro: {0}

    (t-t_

    Unknown macro: {i}

    ))]\end

    Unknown macro: {center}

    Velocity


    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ v(t) = -\omega x_

    Unknown macro: {i}

    \sin(\omega_

    Unknown macro: {0}

    (t-t_

    )) + v_

    Unknown macro: {i}

    \cos(\omega_

    Unknown macro: {0}

    (t-t_

    ))]\end


    Unknown macro: {center}

    Acceleration


    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ a(t) = -\omega_

    Unknown macro: {0}

    ^

    Unknown macro: {2}

    x_

    Unknown macro: {i}

    \cos(\omega_

    (t-t_

    Unknown macro: {i}

    )) - \omega_

    Unknown macro: {0}

    v_

    \sin(\omega_

    Unknown macro: {0}

    (t-t_

    Unknown macro: {i}

    )) = -\omega_

    ^

    Unknown macro: {2}

    x(t) ]\end

    Position
    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ x(t) = A\cos(\omega_

    Unknown macro: {0}

    t + \phi)]\end

    Velocity
    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ v(t) = -A\omega_

    Unknown macro: {0}

    \sin(\omega_

    t + \phi)]\end

    Acceleration
    Unknown macro: {center}
    Unknown macro: {latex}

    \begin

    Unknown macro: {large}

    [ a(t) = -\omega_

    Unknown macro: {0}

    ^

    Unknown macro: {2}

    A\cos(\omega_

    t+\phi) = -\omega_

    Unknown macro: {0}

    ^

    Unknown macro: {2}

    x(t)]\end

    Diagrammatical Representations

    Relevant Examples

    All Examples involving this Model


    Unknown macro: {search-box}



    Error formatting macro: live-template: java.lang.NullPointerException
    • No labels